UNDERSTANDING STORAGE PERFORMANCE FOR VIDEO PRODUCTION

Dave Frederick

Sr. Director of Media & Entertainment

Collaborative 4K Post Is Not Easy

- Large formats and data rates challenge standard file systems
 - Reading, writing, tracking, sharing and protecting
- NAS-based systems struggle with 4K workflows
 - Latency from packetization is real
 - Ethernet based system saturate quickly
- Every additional user multiplies the problem
 - Teams frequently read from the same file during production

Uncompressed Resolutions

8K UHD is on the way

7680 x 4320 16-bit @ 60fps 12 GB/s 12.9 TB/hr

The 4K Family

- Approx. 4X horz resolution of HD
- 3840x2160, 4096x2160 most common
- 4096x3072, 4096x3112 variants
- All "4K"

4K UHD

3840 x 2160 10-bit @ 60fps 2 GB/s 7.2 TB/hr

4K DCI

(4096 x 2160) 10-bit @ 24fps 849 MB/s 3.1 TB/hr High-Definition (Full HD) 1920 x 1080 10-bit @ 30fps 248 MB/s 896 GB/hr

 Standard Definition 720 x 488

 (2048 x 1080) 10-bit @ 24 fps 212 MB/s 764 GB/hr
 10-bit@ 29.97fps 27 MB/s 94 GB/hr

What Impacts Performance

- Host (client) machine
- Data Rate
 - Compressed or Uncompressed
 - Resolution and Frame Rate

Stream Count

- Number of cameras used in acquisition, composition layers, workstation requirements
- Mezzanine or proxy workflows
- Drive type

But All 4K Is Not Equal

4K Format	Resolution (W x H)	Frame Rate (fps)	Data Rates (MB/s)	Storage Capacity (GB/Hr)	DroPos
UHD ProRes 422 HQ	3840 X 2160	30	111	400	Prones
		60	221	796	
UHD ProRes 4444 XQ	3840 X 2160	30	249	896	
UHD (10 bit)	3840 x 2160	24	807	2,905	
		60	1990	7,164	
4K Full App (10 bit)	4096 x 3112	24	1224	4,406	

Tested formats and frame rates

4K Format Guide

- 4K is horizontal resolution of approx. 4,000 pixels
- There are several resolutions that qualify as 4K
- UHD or "Quad HD" is 4x HD resolution (TV)
- Full App 4K is Super 35mm resolution (Film)

Flash For 4K In The Real World

- Customers struggling to move to 4K workflows on existing storage
- Compounded by multiple users sharing content and workloads
- Flash might be the answer, but at what cost?

Test Methodology

Define the Test Metrics

Identified optimal StorNext variables for M&E workflows

- 6 4K Formats, 3 Drive types, 5 Arrays, 2 Capacities, 3 Clients OS
- Over 500 separate tests
- Invent the Ruler
 - Calibrate Application stream counts for Autodesk Flame and Blackmagic Resolve with Vid I/O numbers
- I/O Test Files
 - Uncompressed: created frames to match published resolutions and data rates
 - Compressed: created individual files that mirrored published codec bitrates
- Capacity and Color
 - Tested all configuration at 0% and 85% capacity
 - All tests on RGB rather than YUV

How Operating Systems Differ

- Linux is the optimal performer
 - Most efficient HBA drivers
- Windows drivers have more CPU overhead, less efficient
 - Windows is 15% less efficient than Linux
- macOS is similarly less efficient than Linux in multi-client environments
 - macOS is overly aggressive with I/O requests
 - HBA manufacturers must be diligent with drivers

Scalability and Growth

"Scale-up" Adding JBOD storage to an existing RBOD chassis

- Capacity upgrade with slight increase in performance from additional spindles
- Too many spindles can saturate the controller

"Scale-Out" Adding RBOD chassis to existing RBOD chassis (with or without JBODs)

- Simultaneous performance and capacity upgrade
- Performance virtually doubles
- Pract

- 1+3

Comparing SSDs and HDDs

Ideal for high stream count and low capacity requirements

		Stream Count		Cost Per Stream (Relative)		Useable
Drive From Factor	Configuration	Compressed ProRes 422 HQ	Uncompressed UHD 24 fps (10-bit)	Compressed ProRes 422 HQ	Uncompressed UHD 24 fps (10-bit)	Capacity (TB)
3.5 HDDs 4 TB	QXS-412	6	0	\$1.7 X	N/A	40
	QXS-412 1+3	15	2	\$1.6 X	\$1.7 Z	160
	QXS-456 RAID	14	2	\$1.8 X	\$1.4 Z	384
2.5 HDDs 1.2 TB	QXS-424 RAID	13	2	\$ X	\$ Z	24
	QXS-424 RAID 2+2	28	5	\$1.5 X	\$1.6 Z	96
2.5" SSDs 400 GB	QXS-424 RAID All-SSDs	49	3	\$0.52 X	\$3.9 Z	8
	QXS-648 RAID All-SSD	66	6	\$0.74 X	\$1.2 Z	16

All connectivity via Fibre Channel – Ethernet significantly lower Read streams at 85% capacity Prices based on average street price of storage arrays only

© 2017 Quantum Corporation 10

[]

The Right Drive for the Job

- Solid State Drives (SSDs)
 - Lowest capacity
 - Highest performance
 - Highest price
 - SSDs for compressed? Yes, when stream count is high.
 - Uncompressed may not be worth the cost.
- 2.5" HDDs
 - Low capacity
 - High performance (10K RPM)
 - Higher priced

● 3.5″ HDDs

- High-capacity
- Low performance (7.2K RPM)
- Affordable

[].

4K Reference Architectures

Price

Quantum

© 2017 Quantum Corporation. Company Confidential.