

Getting it Right: Testing Storage Arrays The Way They'll be Used

Peter Murray Virtual Instruments

The Journey: How Did we Get Here?

- Storage testing was black art
- Test programs were derived from disk drive utilities;
- Did not represent actual applications
- Could not emulate temporal or spatial locality
- Did not emulate Data Content
- Difficult to emulate varying loads on many LUNs
- Difficult or impossible to configure the metadata and structure required to emulate file-based apps

How is Flash Different?

- Addressable storage space is likely less than raw space
 - Designed to help increase flash life
- Can help avoid performance issues during garbage collection
- Other methods are available to avoid performance issues
- Deduplication & compression decrease storage requirements for an app
 - More storage per nominal byte
 - But, performance may be impacted
- Advanced metadata processing & workload profiles at scale make it harder to saturate an array
- Test at near full capacity to understand array performance
- Testing with hotspots helps model application behavior
- Garbage collection or metadata processing may affect performance
- Software services & protocols software runs differently on SSD than on HDD

SS Arrays Require New Storage Testing Methods

- Applications exhibit spatial and temporal locality
 - Modern solid state arrays are designed with this in mind
- Application traffic contains data content
 - Data is random or compressible
 - Data may also be de-dupable
 - All content types are present in most applications
- Application traffic is "bursty"!
 - Testing without bursts is unrealistic
- Some all solid-state storage arrays must be tested with locality and content
 - Data reduction is a key feature can't be turned off
 - Legacy testing apps cannot emulate the locality, content or content flocking present in applications
- New thinking and testing applications are mandatory!

Realistic Access Patterns

- Testing should reflect the access patterns of applications
 - No application uses entirely random or sequential access
 - No application consist of only writes
- Access pattern factors:
 - Write/read ratios
 - Random/sequential access ratios
 - Access pattern drift
 - Realistic block-size mix
 - Alternate paths
- Should test with enterprise feature sets
 - Backups, snapshots, replication, etc.

Access Patterns

- Application access is not uniformly random
- Hot spots are storage locations accessed more frequently than others during a defined time period
 - Index Files
 - Temp Files
 - Logs
 - Journals
- Testing should reflect Hot Spots and Hot Spot Skew
 - Hot spot emulation example:
 - 1% of all access regions receive 35% of the IOs
 - 1.5% of all access regions receive 15% of the IOs
 - 2.5% of all access regions receive 15% of the IOs
 - 5% of all access regions receive 15% of the IOs
 - 7% of all access regions receive 10% of the IOs
 - 6% of all access regions receive 5% of the IOs
 - 7% of all access regions receive 3% of the IOs
 - 5% of all access regions receive 1% of the IOs
 - 65% of all access regions receive 1% of the IOs
- Testing should accurately emulate data offset, or "Drift", over time
 - Note: The developer of fio has written that skew is even greater than the example above

Locality

- Locality is present in virtually all applications
- Storage arrays use locality do determine where and when to write data
- Locality defines:
 - Where data is written or read spatial locality
 - When data is written or read temporal locality
- Hot spots/hot bands represent locality
- Testing without locality does not stress an array as it will be in production

Block Sizes

- Block sizes vary by application and operation
 - 25K-35K average size is common
- Applications do not use uniform block sizes
 - Sizes vary according to operations
 - OLTP transactions typically small
 - Analytics, reporting typically larger
- Testing must include representative block sizes
 - Block sizes should be mixed to reflect applications
 - E.g. 3% 4K, 15% 8K, 20% 16K, 52% 32K, 10% 64K

Bursts: What's real?

Min Max Pending Exchanges

For larger data centers Top Max Pending can average: 500-700

Bursts: What do Real Reads Look Like?

If constant would mean: **40K to 80K** IOPs

The bursts are ~40 times as high as the average

Bursts: What do Real Writes Look Like?

Even a bigger difference For writes

Bursts: What do Real Writes Look Like?

Even a bigger difference For writes

50ms bursts > 1 minute Average IOPs

Bursts: What LDX generates by default

One second of data

Running at 80% of Maximum

Testing Without Bursts

Bursts: Real World Issue

Bursts: The difference?

Test	IOPs	Throughput	Latency	Gap
With bursts	20K	1250 MB	6.5 ms	Real world
With bursts	25K	1569 MB	80 ms	Unacceptable latency
Without bursts	25K	1566 MB	1.2 ms	Lab-Myth

Data Content

- Modern Storage arrays use data reduction
- Data reduction saves array space
- Consists of:
 - Deduplication
 - Compression
 - Pattern reduction
- Data content patterns are a must for testing data reduction

Measuring Data Reduction

- Data content patterns
 - Created before testing
- Data content streams
 - Written during testing
- Repeating and non-repeating patterns
 - Random
 - Compressible
- Varying pattern lengths

Thread Count and Queue Depth

- Thread counts and queue depth
 - Tests should include increasing thread counts to find maximums for each test case
 - Should include increasing queue depth to find maximums for each test case
- Find:
 - Max IOPs an array can do per thread/queue depth, and
 - Total for a given number of threads and queue depth
- Increase thread count past current requirements to show how array meets future needs

Methodology In Action

Actual results comparing 2 leading AFAs

IOPS Comparison for 3 Groups of Data Patterns & R/W Ratios

Which is best?

Depends on your workload.

Read/Write Ratios

Flash Memory Summit

Typical Performance Testing Questions

- - Which is the best technology for my needs?
 - Which is the best vendor / product for my needs?
 - What is the optimal configuration for my array?
 - Does performance degrade with enterprise features:
 - **Deduplication?**
 - Compression?
 - Snapshots, Clones, Replication?
 - What are the performance limits of a potential configuration?
 - How does an array behave when it reaches its performance limit?
 - Does performance degrade over time?
 - Which workloads are best for an AFA? A hybrid storage array?

Traditional Storage Testing Approaches

- Limits finding
- Functional testing
- Error Injection
- Soak testing

Workload Modeling

Workload Modeling

Performance Profiling

Benefits of Realistic Testing

- Performance assurance
- Reduced storage costs
- Increased uptime
- Acceleration of new application deployments

Summary

- Application Testing is now mandatory
- Black art has become repeatable
- No synthetic workload is perfect
- But is the best approach available
- This will only improve over time
- Customers can see:
- How closely the model emulates apps
- A realistic view of how an array operates
- This new model is changing storage testing

