

Scalable Platform for Keeping SSD Test Costs Under Control

Ben Rogel-Favila, Ph.D. and Scott West Advantest America, Inc.

Santa Clara, CA August 2017

- Time to market and test
- SSD Test Platform
 - Main characteristics
- SSD Test Platform Automation
- Traffic Capture and Debug Tools
- Conclusions

Time-To-Market and Market Share

- Hitting market window greatly increases product revenue
- Both early market volume and increased market share are gained
- TTM is critical to determining product success

How Does Test Affect TTM?

Flash Memory Summit

- RDT is needed to qualify the SSD product ٠
- Followed by time to release to production test \bullet
- Risks to hit market window: ۲
 - Product and Test development delays
 - Qual failures •
- **Risk Mitigation** ٠
 - Catch device problems early ٠
 - Thorough set of Engineering Tools
 - <u>Support</u> from tester provider
 - Catch test development problems early
 - Run all production, RDT at engineering, in the same environment
 - Minimize introduction of new test conditions from ٠ engineering through production
 - Reuse tests and interfaces

How to address all these test needs?

- All-included Test Cell
 - Advantage: ٠
 - Disadvantage: •
- Can do everything Expensive
- Application Specific Test Cell
 - Advantage: •

•

Inexpensive Disadvantage: Can only do one thing

Is it possible to have the best of both worlds?

- Test Platform SLT Test Platform
 - Allows for component "mix-and-match" to develop • optimal tester at the right cost.

8/16/17

Flash Memory Summit

SSD Test Platform

- Today
 - Application Specific Test Systems at "optimal" cost.
 - Chose components tailored to address current test needs.
- Tomorrow
 - Only need to buy specific components to cater for new DUT technologies, for instance, "next generation protocol board".
 - Reuse the rest of the system.

Different Form Factors

Different Speeds: 12G Signal Integrity

Powerful, Easy-to-Use Software

Flash Memory Summit Stylus Main, Datalog & Test Flow Control Tools

Graph Characterization (BW vs LBA Size)

Power Profile Tool

Calibration & Diagnostics

14

Production Operator Interface

SSD Automated System Scalability

Flash Memory Summit

Fault Detection Vs Fault Location

- ATE normally focuses on fault detection.
- SSD Test requires fault location capabilities.

LTSSM Capt	ture	SW FPGA		DUT	
LTSSM Capture		Link Protocol PIDA/FA			
 Vary fields based u 	upon state	SW Drivers Installation			
 No need to show lot 	w power state-machi	nes in L0 or F	ecovery.	Equalization	
 Add field to indicate 	capture format				
– Link EQ negotiatio	n				
ltssm=0b Rov_RLoc_ ltssm=0c_Rcv_Equ	ds=1 ec=1 pre=4 cursor=[,- ds=0 ec=0 pre=4 cursor=[00,4	-,00] use=0 fs=24 15 0,00] use=0	-08 TAEI-0	RXEI=0 RAEI=0	
ltssm=0c Rcv_Equ	ds=0 ac=1 pxa=4 cursor=[,- ds=1 ac=2 pxa=4 cursor=[00,4 ds=0 ac=2 pxa=4 cursor=[00,2 ds=0 ac=2 pxa=4 cursor=[00,2	-,00] uss=0 fs=40 15 0,00] uss=0 0,00] uss=0 9,01] uss=0	TXEI=0	RXEI=0	
ltssm=0c Rcv_Equ ltssm=0c Rcv_Equ	ds=1 ec=2 pre=4 cursor=[00,3 ds=0 ec=2 pre=4 cursor=[00,3 ds=1 ec=2 pre=4 cursor=[00,5	9,011 use=0 8,021 use=0 8,021 use=0	TxEI=0	RXEI=0	
ltssm=0c Rcv_Equ	ds=0 ec=2 pre=4 cursor=[00,3 ds=1 ec=2 pre=4 cursor=[00,3 ds=0 ec=2 pre=4 cursor=[00,6	7,03] ume=0 7,03] ume=0 0,00] ume=0	TxEI=0	RXEI=0	
ltssm=Oc Rcv Equ	ds=1 ec=2 pre=4 cursor=[00,4 ds=0 ec=3 pre=4 cursor=[00,2	0,001 use=0 4,001 use=0	TXEI-0	RXEI-0	
ltssm=Oc Rcv Equ ltssm=Ob Rcv_RLoc	ds=1 ec=3 pre=4 cursor=[00,2	4,001 038-0	TXEI=0	REEI=0	

Conclusions

- Time to market is critical for product success.
 - Test development time and qual risk reduction are keys to TTM.

An SSD Test Platform optimally addresses:

- Shortening time to market.
- Adapt to ever decreasing SSD product lifecycles.
- Keep test cost under control even as device performance, density, and variety all increase.

Thank you!