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NVMM File System Requirements 

•  Legacy	File	IO	Accelera1on	–	fast	and	easy	
–  Run	exis1ng	IO-intensive	apps	on	NVDIMMs	
–  “just	works”	

•  Strong	atomicity	
•  DAX	Mmap	

–  Load-store	access	&	complex	data	structures	
–  More	control/responsibility	for	programs	

•  Data	protec1on	
–  Don’t	trust	the	media	or	other	soPware	
–  Support	backups		

•  High	performance	
–  Otherwise,	why	bother?	

DAX 
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DAX 
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Files,	Atomicity,	and	
Performance	
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Log Structured FS For NVMM 

•  A	Nova	FS	is	a	tree	of	logs	
– One	log	per	i-node	
– Logs	are	not	con1guous	

•  I-nodes	point	to	the	head	and	tail 

Head Tail Inode 

Inode	log 

Commi^ed	entry 

Uncommi^ed	entry 

Per-inode	logging 
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•  Combines	log-structuring,	
journaling	and	copy-on-write	

•  Log-structuring	for	single	log	
update	
– Write,	msync,	chmod,	etc	
– Lower	overhead	than	
journaling	and	shadow	paging	

File	log 

Tail Tail 

Atomicity: Logging for Simple Metadata 
Operations 
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•  Lightweight	journaling	
for	update	across	logs	
– Unlink,	rename,	etc	
–  Journal	log	tails	instead	of	
metadata	or	data	

File	log 

Directory	log 

Tail 

Tail Tail 

Tail 

Atomicity: Lightweight Journaling for Complex 
Metadata Operations 

Dir	tail 

File	tail 
Journal 
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•  Copy-on-write	for	file	
data	
– Log	only	contains	
metadata	

– Log	is	short	
File	log 

Tail 

Atomicity: Copy-on-write for file data 

Data	1 Data	2 

Tail 

Data	0 Data	1 
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Atomicity: DAX 

•  Nova	does	not	make	atomicity	guarantees	for	DAX	
mmap()’d	data	

•  msync()	works,	but	it’s	slow	&	non-atomic	
•  The	program	must	ensure	consistency	

–  ISA	Support:		CLWB,	clflush,	etc.	
– Careful	programming	

DAX 
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•  Per-inode	logging	allows	for	
high	concurrency	

•  Split	data	structure	between	
DRAM	and	NVMM	
–  Persistent	log	is	simple	and	
efficient		

–  Vola1le	tree	structure	has	no	
consistency	overhead	

File	log 

DRAM Indexes for High Performance 

Data	1 Data	2 

Tail 

Data	0 

DRAM 

NVMM 

Radix	tree 

0 1 2 3
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Performance and Scalability 

DRAM 

NVMM 
Journal 

Inode	table 

Free	list 

CPU	0 

Journal 

Inode	table 

Free	list 

CPU	1 

Head Tail Inode 

Inode	log 

Super	
block 

Recovery	
inode 

•  Put	allocator	in	DRAM	
•  High	scalability	

– Per-CPU	NVMM	free	list,	
journal	and	inode	table	

– Concurrent	transac1ons	
and	alloca1on/dealloca1on	
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Fast garbage collection 

•  Log	is	a	linked	list	
•  Log	only	contains	
metadata	

•  Fast	GC	deletes	dead	log	
pages	from	the	linked	list	

•  No	copying	

Head 

Tail 

Vaild	log	entry Invalid	log	entry 
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Thorough garbage collection 

•  Starts	if	valid	log	entries	<	50%	log	length	
•  Format	a	new	log	and	atomically	replace	the	old	one	
•  Only	copy	metadata	

Head 

Tail 

Vaild	log	entry Invalid	log	entry 
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Recovery 

•  Normal	shutdown	
recovery:	
– Store	allocator	state	in	
recovery	inode	

– Constant	1me	startup	
•  Failure	recovery:	

– Parallel	scan	
– Failure	recovery	bandwidth:	
				>	400	GB/s 

DRAM 

NVMM 
Journal 

Inode	table 

Free	list 

CPU	0 

Journal 

Inode	table 

Free	list 

CPU	1 

Super	
block 

Recovery	
inode 

Recovery	
inode Recovery				

thread 
Recovery				
thread 
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Operation Latency 

•  Intel	PM	Emula1on	Plaporm	
– Emulates	different	NVM	
characteris1cs	

– Emulates	clwb/clflush	latency	

•  NOVA	provides	low	latency	
atomicity	
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Filebench throughput 

•  NOVA	achieves	high	
performance	with	
strong	data	consistency	
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DAX,	Backup,	and	Data	
Protec1on	

DAX 
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DAX Challenges 

•  DAX	mmap()	gives	the	programmer	great	power	
– Fine-grain	updates	
– Pointer-based	data	structures	
– Custom	data	layout	

•  …along	with	great	responsibili1es.	
– Data	structure	consistency/persistence	ordering	
– Memory	protec1on/media	error	management	

•  The	file	system	must	not	interfere.	

DAX 
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Snapshots for Normal File Access 

0 Current epoch

0 File log	

Data 

Page	1 

Snapshot entry
Data in snapshot

File write entry
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Memory Ordering With DAX mmap() 

•  D	and	V	live	in	two	pages	of	a	mmap()’d	region.	
•  Recovery	invariant:	if	V	==	True,	then	D	is	valid	

D	=	42;	
V	=	true;	
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			False	

			?	

V	=	
True;	

D	=	1;	

Corrupt Snapshots with DAX-mmap() 

R/W RO Page	
Fault	

Copy	on	
Write	

Value	
Change	

Applica1on:	

Page	hos1ng	D:	

Page	hos1ng	V:	

?	

T	

Time	
Snapshot	

Snapshot	

True	

1	

•  Recovery	invariant:	if	V	==	True,	then	D	is	valid	
–  Incorrect:	Naïvely	mark	pages	read-only	one-at-a-1me	
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			False	

			?	

D	=	1;	

Consistent Snapshots with DAX-mmap() 

R/W RO Page	
Fault	

Value	
Change	

Applica1on:	

Page	hos1ng	D:	

Page	hos1ng	V:	

?	

Time	

Snapshot	

V	=	
True;	

True	

1	

•  Recovery	invariant:	if	V	==	True,	then	D	is	valid	
– Correct:	Block	page	faults	un1l	all	pages	are	read-only	

RO 
Blocking	

F	

Copy	on	
Write	

Snapshot	
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•  Normal	execu1on	vs.	taking	snapshots	every	10s	
– Negligible	performance	loss	through	read()/write()	
– Average	performance	loss	6.2%	through	mmap()	

Performance impact of snapshots 

Conven1onal	workloads	 NVMM-aware	workloads	from	WHISPER	
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Protec1ng	Metadata	
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NVMM Failure Modes: Media Failures 

•  Media	errors	
– Detectable	&	correctable	

•  Transparent	to	soPware	
– Detectable	&	uncorrectable	

•  Affect	a	con1guous	range	of	data	
•  Raise	machine	check	excep1on	(MCE)	

– Undetectable	
•  May	consume	corrupted	data	

•  SoPware	scribbles	
–  Kernel	bugs	or	own	bugs	
–  Transparent	to	hardware	

SoPware:	
	
NVMM	Ctrl.:	

Re
ad
	

NVMM	data:	

Detects	&	corrects	errors 

Consumes	good	data 

Media	error 
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NVMM Failure Modes : Media Failures 

•  Media	errors	
– Detectable	&	correctable	

•  Transparent	to	soPware	
– Detectable	&	uncorrectable	

•  Affect	a	con1guous	range	of	data	
•  Raise	machine	check	excep1on	(MCE)	

– Undetectable	
•  May	consume	corrupted	data	

•  SoPware	scribbles	
–  Kernel	bugs	or	own	bugs	
–  Transparent	to	hardware	

NVMM	data:	

SoPware:	
	
NVMM	Ctrl.:	 Detects	uncorrectable	errors	

Raises	excep1on 

Receives	MCE 

Media	error	&	
Poison	Radius	
(PR)	
e.g.	512	bytes 

Re
ad
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NVMM Failure Modes : Media Failures 

•  Media	errors	
– Detectable	&	correctable	

•  Transparent	to	soPware	
– Detectable	&	uncorrectable	

•  Affect	a	con1guous	range	of	data	
•  Raise	machine	check	excep1on	(MCE)	

– Undetectable	
•  Consume	corrupted	data	

•  SoPware	scribbles	
–  Kernel	bugs	or	own	bugs	
–  Transparent	to	hardware	

NVMM	data:	
Media	error 

SoPware:	
	
NVMM	Ctrl.:	 Sees	no	error 

Consumes	corrupted	data	 

Re
ad
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NVMM Failure Modes: Scribbles 

•  Media	errors	
–  Detectable	&	correctable	

•  Transparent	to	soPware	
–  Detectable	&	uncorrectable	

•  Affect	a	con1guous	range	of	data	
•  Raise	machine	check	excep1on	(MCE)	

–  Undetectable	
•  Consume	corrupted	data	

•  SoPware	“scribbles”	
–  Kernel	bugs	or	NOVA	bugs	
–  NVMM	file	systems	are	highly	vulnerable	

NVMM	data:	

SoPware:	
	
NVMM	Ctrl.:	 Updates	ECC 

Bug	code	scribbles	NVMM 

Scribble	error 

W
rite	
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NVMM Failure Modes: Scribbles 

•  Media	errors	
–  Detectable	&	correctable	

•  Transparent	to	soPware	
–  Detectable	&	uncorrectable	

•  Affect	a	con1guous	range	of	data	
•  Raise	machine	check	excep1on	(MCE)	

–  Undetectable	
•  Consume	corrupted	data	

•  SoPware	“scribbles”	
–  Kernel	bugs	or	NOVA	bugs	
–  NVMM	file	systems	are	highly	vulnerable	

NVMM	data:	

SoPware:	
	
NVMM	Ctrl.:	 Sees	no	error 

Consumes	corrupted	data 

Scribble	error 

Re
ad
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Head’ Tail’ csum’ 

Head Tail Head Tail csum 

Head’ Tail’ csum’ H1’ T1’ 

Head Tail csum H1 T1 

•  Replicate	everything	
–  Inodes	
–  Logs	
–  Superblock	
– …	

•  CRC32	Checksums	everywhere	
ent1’ c1’ entN’ cN’ … 

NOVA Metadata Protection 

inode 

ent1 c1 entN cN … 

Data	1 Data	2 

inode’ 
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Defense Against Scribbles 

•  Tolera1ng	Larger	Scribbles	
– Allocate	replicas	far	from	one	another	
– Can	tolerate	arbitrarily	large	scribbles	to	metadata.	

•  Preven1ng	scribbles	
– Mark	all	NVMM	as	read-only	
– Disable	CPU	write	protec1on	while	accessing	NVMM	
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Protec1ng	Data	

DAX 
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•  Divide	4KB	blocks	into	512-byte	stripes	
•  Compute	a	RAID	5-style	parity	stripe	
•  Compute	and	replicate	checksums	for	each	stripe	
	

NOVA Data Protection 

S0 S1 S2 S3 S4 S5 S6 S7 P 

1	Block	

P	=	⊕	S0..7 

512-Byte	stripe	segments	

Ci	=	CRC32C(Si) 
Replicated 
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Data Protection With DAX mmap() 

•  File	systems	cannot	efficiently	protect	mmap’ed	
data,	since	stores	are	invisible	

•  NOVA’s	data	protec1on	contract:	

NOVA	protects	pages	from	media	errors	
and	scribbles	iff	they	are	not	mmap()’d	for	

wriHng.	

DAX 
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•  NOVA	logs	mmap()	opera1ons	

File data protection with DAX-mmap 

File	data:	

File	log:	

NOVA:	
read(),	
write() 

Applica1ons:	

Kernel-space	

NVDIMMs	

User-space	

mmap()	

load/store	load/store	

protected	
unprotected	

mmap	log	entry	
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•  On	unmap	and	during	recovery,	NOVA	restores	protec1on	

File data protection with DAX-mmap 

File	data:	

File	log:	

NOVA:	
read(),	
write() 

Applica1ons:	

Kernel-space	

NVDIMMs	

User-space	

mmap()	

munmap()	

Protec1on	restored	

load/store	
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•  On	unmap	and	during	recovery,	NOVA	restores	protec1on	

File data protection with DAX-mmap 

File	data:	

File	log:	

NOVA:	
read(),	
write() 

Applica1ons:	

Kernel-space	

NVDIMMs	

User-space	

mmap()	

System	Failure	+	
recovery	



41	

Performance	



42	

Data	Protec1on	O(N)	

Metadata	Protec1on	O(1)	
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Storage Utilization 

Replica inode: 0.10%
Replica log:   2.00%
File checksum: 1.56%
File parity:   11.1%

Primary log:   2.00%
Primary inode: 0.10%
File data:     82.4%

Unused
0.75%

Redundancy
14.76%
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Performance Cost of Data Integrity 
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Conclusion 

•  Exis1ng	file	systems	do	not	meet	the	requirements	of	
applica1ons	on	NVMM	file	systems	

•  NOVA’s	mul1-log	design	achieves	high	performance	and	strong	
consistency	

•  NOVA’s	data	protec1on	features	ensure	data	integrity	
•  NOVA	outperforms	exis1ng	file	systems	while	providing	
stronger	consistency	and	data	protec1on	guarantees	
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NOVA	is	open	source.	
We	are	preparing	it	for	

addi1on	to	Linux.	
To	help	or	try	it	out:		h^ps://github.com/

NVSL/linux-nova	
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Thanks!	


