
1	

NOVA: A High-Performance, Fault
Tolerant File System for Non-Volatile

Main Memories
Jian	Xu,	Lu	Zhang,	Amirsaman	Memaripour,	Akshatha	Gangadharaiah,	
Amit	Borase,	Tamires	Brito	Da	Silva,	Andy	Rudoff	(Intel),	Steven	Swanson	
	
Non-VolaHle	Systems	Laboratory	
Department	of	Computer	Science	and	Engineering	
University	of	California,	San	Diego	
	

2	

NVMM File System Requirements

•  Legacy	File	IO	Accelera1on	–	fast	and	easy	
–  Run	exis1ng	IO-intensive	apps	on	NVDIMMs	
–  “just	works”	

•  Strong	atomicity	
•  DAX	Mmap	

–  Load-store	access	&	complex	data	structures	
–  More	control/responsibility	for	programs	

•  Data	protec1on	
–  Don’t	trust	the	media	or	other	soPware	
–  Support	backups		

•  High	performance	
–  Otherwise,	why	bother?	

DAX

3	

DAX

XFS	 EXT4	 F2FS	 BTRFS	 NILFS	

✔ ❌

❌

✔❌

4	

DAX ❌

❌

✔ ✔✔

XFS-DAX	EXT4-DAX	
BPFS	 SCMFS	 PMFS	 Aerie	

M1FS	

5	

DAX

NOVA	

✔ ✔✔✔✔

6	

Files,	Atomicity,	and	
Performance	

7	

Log Structured FS For NVMM

•  A	Nova	FS	is	a	tree	of	logs	
– One	log	per	i-node	
– Logs	are	not	con1guous	

•  I-nodes	point	to	the	head	and	tail

Head Tail Inode

Inode	log

Commi^ed	entry

Uncommi^ed	entry

Per-inode	logging

8	

•  Combines	log-structuring,	
journaling	and	copy-on-write	

•  Log-structuring	for	single	log	
update	
– Write,	msync,	chmod,	etc	
– Lower	overhead	than	
journaling	and	shadow	paging	

File	log

Tail Tail

Atomicity: Logging for Simple Metadata
Operations

9	

•  Lightweight	journaling	
for	update	across	logs	
– Unlink,	rename,	etc	
–  Journal	log	tails	instead	of	
metadata	or	data	

File	log

Directory	log

Tail

Tail Tail

Tail

Atomicity: Lightweight Journaling for Complex
Metadata Operations

Dir	tail

File	tail
Journal

10	

•  Copy-on-write	for	file	
data	
– Log	only	contains	
metadata	

– Log	is	short	
File	log

Tail

Atomicity: Copy-on-write for file data

Data	1 Data	2

Tail

Data	0 Data	1

11	

Atomicity: DAX

•  Nova	does	not	make	atomicity	guarantees	for	DAX	
mmap()’d	data	

•  msync()	works,	but	it’s	slow	&	non-atomic	
•  The	program	must	ensure	consistency	

–  ISA	Support:		CLWB,	clflush,	etc.	
– Careful	programming	

DAX

12	

•  Per-inode	logging	allows	for	
high	concurrency	

•  Split	data	structure	between	
DRAM	and	NVMM	
–  Persistent	log	is	simple	and	
efficient		

–  Vola1le	tree	structure	has	no	
consistency	overhead	

File	log

DRAM Indexes for High Performance

Data	1 Data	2

Tail

Data	0

DRAM

NVMM

Radix	tree

0 1 2 3

13	

Performance and Scalability

DRAM

NVMM
Journal

Inode	table

Free	list

CPU	0

Journal

Inode	table

Free	list

CPU	1

Head Tail Inode

Inode	log

Super	
block

Recovery	
inode

•  Put	allocator	in	DRAM	
•  High	scalability	

– Per-CPU	NVMM	free	list,	
journal	and	inode	table	

– Concurrent	transac1ons	
and	alloca1on/dealloca1on	

14	

Fast garbage collection

•  Log	is	a	linked	list	
•  Log	only	contains	
metadata	

•  Fast	GC	deletes	dead	log	
pages	from	the	linked	list	

•  No	copying	

Head

Tail

Vaild	log	entry Invalid	log	entry

15	

Thorough garbage collection

•  Starts	if	valid	log	entries	<	50%	log	length	
•  Format	a	new	log	and	atomically	replace	the	old	one	
•  Only	copy	metadata	

Head

Tail

Vaild	log	entry Invalid	log	entry

16	

Recovery

•  Normal	shutdown	
recovery:	
– Store	allocator	state	in	
recovery	inode	

– Constant	1me	startup	
•  Failure	recovery:	

– Parallel	scan	
– Failure	recovery	bandwidth:	
				>	400	GB/s

DRAM

NVMM
Journal

Inode	table

Free	list

CPU	0

Journal

Inode	table

Free	list

CPU	1

Super	
block

Recovery	
inode

Recovery	
inode Recovery				

thread
Recovery				
thread

17	

Operation Latency

•  Intel	PM	Emula1on	Plaporm	
– Emulates	different	NVM	
characteris1cs	

– Emulates	clwb/clflush	latency	

•  NOVA	provides	low	latency	
atomicity	

0	

5	

10	

15	

20	

25	

30	

Create	 Append	(4KB)	 Delete	

La
te
nc
y	
(m

ic
ro
se
co
nd

)	

Ext4-datajournal	 Ext4-DAX	
xfs-DAX	 m1fs	
NOVA	

18	

Filebench throughput

•  NOVA	achieves	high	
performance	with	
strong	data	consistency	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

Fileserver	 Varmail	 Webproxy	 Webserver	

O
ps
	p
er
	se

co
nd

	(x
10
00
)	

Ext4-datajournal	 Ext4-DAX	

xfs-DAX	 m1fs	

NOVA	

19	

DAX,	Backup,	and	Data	
Protec1on	

DAX

20	

DAX Challenges

•  DAX	mmap()	gives	the	programmer	great	power	
– Fine-grain	updates	
– Pointer-based	data	structures	
– Custom	data	layout	

•  …along	with	great	responsibili1es.	
– Data	structure	consistency/persistence	ordering	
– Memory	protec1on/media	error	management	

•  The	file	system	must	not	interfere.	

DAX

21	

Snapshots for Normal File Access

0 Current epoch

0 File log	

Data

Page	1

Snapshot entry
Data in snapshot

File write entry
Reclaimed data

Epoch ID
Current data

Snapshot 0

1

1

Data

Page	1

Data

1

Data

Page	1

Data

Snapshot 1

2

Data

2

Data

Page	1

Data

22	

Memory Ordering With DAX mmap()

•  D	and	V	live	in	two	pages	of	a	mmap()’d	region.	
•  Recovery	invariant:	if	V	==	True,	then	D	is	valid	

D	=	42;	
V	=	true;	

23	

			False	

			?	

V	=	
True;	

D	=	1;	

Corrupt Snapshots with DAX-mmap()

R/W RO Page	
Fault	

Copy	on	
Write	

Value	
Change	

Applica1on:	

Page	hos1ng	D:	

Page	hos1ng	V:	

?	

T	

Time	
Snapshot	

Snapshot	

True	

1	

•  Recovery	invariant:	if	V	==	True,	then	D	is	valid	
–  Incorrect:	Naïvely	mark	pages	read-only	one-at-a-1me	

24	

			False	

			?	

D	=	1;	

Consistent Snapshots with DAX-mmap()

R/W RO Page	
Fault	

Value	
Change	

Applica1on:	

Page	hos1ng	D:	

Page	hos1ng	V:	

?	

Time	

Snapshot	

V	=	
True;	

True	

1	

•  Recovery	invariant:	if	V	==	True,	then	D	is	valid	
– Correct:	Block	page	faults	un1l	all	pages	are	read-only	

RO
Blocking	

F	

Copy	on	
Write	

Snapshot	

25	

•  Normal	execu1on	vs.	taking	snapshots	every	10s	
– Negligible	performance	loss	through	read()/write()	
– Average	performance	loss	6.2%	through	mmap()	

Performance impact of snapshots

Conven1onal	workloads	 NVMM-aware	workloads	from	WHISPER	

26	

Protec1ng	Metadata	

27	

NVMM Failure Modes: Media Failures

•  Media	errors	
– Detectable	&	correctable	

•  Transparent	to	soPware	
– Detectable	&	uncorrectable	

•  Affect	a	con1guous	range	of	data	
•  Raise	machine	check	excep1on	(MCE)	

– Undetectable	
•  May	consume	corrupted	data	

•  SoPware	scribbles	
–  Kernel	bugs	or	own	bugs	
–  Transparent	to	hardware	

SoPware:	
	
NVMM	Ctrl.:	

Re
ad
	

NVMM	data:	

Detects	&	corrects	errors

Consumes	good	data

Media	error

28	

NVMM Failure Modes : Media Failures

•  Media	errors	
– Detectable	&	correctable	

•  Transparent	to	soPware	
– Detectable	&	uncorrectable	

•  Affect	a	con1guous	range	of	data	
•  Raise	machine	check	excep1on	(MCE)	

– Undetectable	
•  May	consume	corrupted	data	

•  SoPware	scribbles	
–  Kernel	bugs	or	own	bugs	
–  Transparent	to	hardware	

NVMM	data:	

SoPware:	
	
NVMM	Ctrl.:	 Detects	uncorrectable	errors	

Raises	excep1on

Receives	MCE

Media	error	&	
Poison	Radius	
(PR)	
e.g.	512	bytes

Re
ad
	

29	

NVMM Failure Modes : Media Failures

•  Media	errors	
– Detectable	&	correctable	

•  Transparent	to	soPware	
– Detectable	&	uncorrectable	

•  Affect	a	con1guous	range	of	data	
•  Raise	machine	check	excep1on	(MCE)	

– Undetectable	
•  Consume	corrupted	data	

•  SoPware	scribbles	
–  Kernel	bugs	or	own	bugs	
–  Transparent	to	hardware	

NVMM	data:	
Media	error

SoPware:	
	
NVMM	Ctrl.:	 Sees	no	error

Consumes	corrupted	data	

Re
ad
	

30	

NVMM Failure Modes: Scribbles

•  Media	errors	
–  Detectable	&	correctable	

•  Transparent	to	soPware	
–  Detectable	&	uncorrectable	

•  Affect	a	con1guous	range	of	data	
•  Raise	machine	check	excep1on	(MCE)	

–  Undetectable	
•  Consume	corrupted	data	

•  SoPware	“scribbles”	
–  Kernel	bugs	or	NOVA	bugs	
–  NVMM	file	systems	are	highly	vulnerable	

NVMM	data:	

SoPware:	
	
NVMM	Ctrl.:	 Updates	ECC

Bug	code	scribbles	NVMM

Scribble	error

W
rite	

31	

NVMM Failure Modes: Scribbles

•  Media	errors	
–  Detectable	&	correctable	

•  Transparent	to	soPware	
–  Detectable	&	uncorrectable	

•  Affect	a	con1guous	range	of	data	
•  Raise	machine	check	excep1on	(MCE)	

–  Undetectable	
•  Consume	corrupted	data	

•  SoPware	“scribbles”	
–  Kernel	bugs	or	NOVA	bugs	
–  NVMM	file	systems	are	highly	vulnerable	

NVMM	data:	

SoPware:	
	
NVMM	Ctrl.:	 Sees	no	error

Consumes	corrupted	data

Scribble	error

Re
ad
	

32	

Head’ Tail’ csum’

Head Tail Head Tail csum

Head’ Tail’ csum’ H1’ T1’

Head Tail csum H1 T1

•  Replicate	everything	
–  Inodes	
–  Logs	
–  Superblock	
– …	

•  CRC32	Checksums	everywhere	
ent1’ c1’ entN’ cN’ …

NOVA Metadata Protection

inode

ent1 c1 entN cN …

Data	1 Data	2

inode’

33	

Defense Against Scribbles

•  Tolera1ng	Larger	Scribbles	
– Allocate	replicas	far	from	one	another	
– Can	tolerate	arbitrarily	large	scribbles	to	metadata.	

•  Preven1ng	scribbles	
– Mark	all	NVMM	as	read-only	
– Disable	CPU	write	protec1on	while	accessing	NVMM	

34	

Protec1ng	Data	

DAX

35	

•  Divide	4KB	blocks	into	512-byte	stripes	
•  Compute	a	RAID	5-style	parity	stripe	
•  Compute	and	replicate	checksums	for	each	stripe	
	

NOVA Data Protection

S0 S1 S2 S3 S4 S5 S6 S7 P

1	Block	

P	=	⊕	S0..7

512-Byte	stripe	segments	

Ci	=	CRC32C(Si)
Replicated

36	

Data Protection With DAX mmap()

•  File	systems	cannot	efficiently	protect	mmap’ed	
data,	since	stores	are	invisible	

•  NOVA’s	data	protec1on	contract:	

NOVA	protects	pages	from	media	errors	
and	scribbles	iff	they	are	not	mmap()’d	for	

wriHng.	

DAX

38	

•  NOVA	logs	mmap()	opera1ons	

File data protection with DAX-mmap

File	data:	

File	log:	

NOVA:	
read(),	
write()

Applica1ons:	

Kernel-space	

NVDIMMs	

User-space	

mmap()	

load/store	load/store	

protected	
unprotected	

mmap	log	entry	

39	

•  On	unmap	and	during	recovery,	NOVA	restores	protec1on	

File data protection with DAX-mmap

File	data:	

File	log:	

NOVA:	
read(),	
write()

Applica1ons:	

Kernel-space	

NVDIMMs	

User-space	

mmap()	

munmap()	

Protec1on	restored	

load/store	

40	

•  On	unmap	and	during	recovery,	NOVA	restores	protec1on	

File data protection with DAX-mmap

File	data:	

File	log:	

NOVA:	
read(),	
write()

Applica1ons:	

Kernel-space	

NVDIMMs	

User-space	

mmap()	

System	Failure	+	
recovery	

41	

Performance	

42	

Data	Protec1on	O(N)	

Metadata	Protec1on	O(1)	

43	

Storage Utilization

Replica inode: 0.10%
Replica log: 2.00%
File checksum: 1.56%
File parity: 11.1%

Primary log: 2.00%
Primary inode: 0.10%
File data: 82.4%

Unused
0.75%

Redundancy
14.76%

44	

Performance Cost of Data Integrity

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Fileserver	 Varmail	 Webproxy	 Webserver	 RocksDB	 MongoDB	 Exim	 TPCC	 average	

ext4-DAX	 ext4-dataj	 For1s	baseline	 w/	MP+WP	 w/	MP+DP+WP	NOVA	

45	

Conclusion

•  Exis1ng	file	systems	do	not	meet	the	requirements	of	
applica1ons	on	NVMM	file	systems	

•  NOVA’s	mul1-log	design	achieves	high	performance	and	strong	
consistency	

•  NOVA’s	data	protec1on	features	ensure	data	integrity	
•  NOVA	outperforms	exis1ng	file	systems	while	providing	
stronger	consistency	and	data	protec1on	guarantees	

	

46	

NOVA	is	open	source.	
We	are	preparing	it	for	

addi1on	to	Linux.	
To	help	or	try	it	out:		h^ps://github.com/

NVSL/linux-nova	

47	

Thanks!	

