

IOPS and QoS Analysis of DRAM-based and MRAM-based NVRAM Cards

Lorenzo Zuolo^{‡**},

Cristian Zambelli⁺, Terry Hulett^{*}, Ben Cooke^{*}, Rino Micheloni^{+**}, and Piero Olivo⁺

‡Microsemi Corporation – Via Torri Bianche, 1 – 20871 Vimercate (Italy)
 †Dipartimento di Ingegneria – Università degli Studi di Ferrara – Via Saragat, 1 – 44122 Ferrara (Italy)
 *Everspin Technologies, Chandler, Arizona 85224 (USA)

**Work done at Università degli Studi di Ferrara

1

The "Holy Grail of Storage": Persistent Memories

... "To be <u>fast like memories</u> and <u>persistent/dense</u> like storage"...

If we google "persistent memory," we find something about: 902,000 results.

Possibilities opened up by persistent memories:

- From "Three-tiers" to "Two-tiers" memory hierarchy
 - Tier 1: Processing/main memory
 - Tier 2: Non-volatile memory
 - Tier 3: Long term archival memory
- "In-non-volatile memory processing"
 - eXec In Place (NOR Flash like)

• ... Infinite possibilities! Flash Memory Summit 2017

Memories and Storage

Memories "Family"

- Fast like CPUs
- Byte addressable
- SRAMs
- DRAMs

Storage "Family"

- Persistent/dense
- Block addressable
- Magnetic (HDDs)
- NAND Flash (SSDs)

...No communication up till today...

Memories + Storage...

Memories "Family"

- Fast like CPUs •
- Byte addressable •
- SRAMs ٠
- **DRAMs**

Storage "Family"

- Persistent/dense
- Block addressable
- Magnetic (HDDs)
- NAND Flash (SSDs)

Memory (DRAM) + Storage (NAND) == New storage tier

...Persistent DRAMs...

Persistent DRAMs combine the performance of DRAMs with the data persistency of storage

Persistent DRAMs Today

NVDIMMs

 Can be connected on the DDR bus

NVRAM cards

- Can be connected on the PCIe bus
- Can be seen either as storage or as memory

Flash Memory Summit 2017 Santa Clara, CA

- The host sees the card either as memory (PCIe Base Address Registers – BARs) or storage (NVMe)
- If the power supply goes down, data are copied from the DRAM to the NAND Flash (super capacitor)

NVRAM cards are gaining a lot of traction because of:

- Peer-to-peer communication over fabric
- CAPI communication between an accelerator and the NVRAM card

2016: The Year of the Storage Revolution

• As a reminder... the "holy grail of storage" is:

"To be <u>fast like memories</u> and <u>persistent/dense</u> like storage"

- At the 2016 Flash Memory Summit, Everspin presented a new class of STT-MRAMs (Spin-Torque Transfer Magnetic-RAMs)
- 256 Mbit
- Fast like a DRAM (DDR3 compliant)
- Non-volatile
- Reliable (10⁹ cycles)

PERSISTENT MEMORIES ARE IN MASS PRODUCTION TODAY!

"All-MRAM" NVRAM Card: **Theoretical Architecture**

What can I do with MRAM chips? \rightarrow Redesign the NVRAM card architecture

Santa Clara, CA

"All-MRAM" NVRAM Card: Realization

- STT-MRAMs are physically different from DRAMs
- First we need to understand if we can replace DRAMs with MRAMs...
- ...without any HW modifications!
- HOW? → Microsemi's Flashtec[™] controller validation board

🖳 MRAM Test Suite		
Type of test		~
Number of cycles		
Start address	0x Stop address 0x	
Pattern to test	0х	
Debug mode	Init MRAM	Start test

Firmware partially rewritten to take into account MRAM timings

...YES WE CAN DO IT!...

Tests performed on the MRAM:

- 1. Verify write and read operations:
 - Written BADC0FFE at address
 0x80
 - Read address 0x80: result was
 BADC0FFE
- 2. Power cycle to check non-volatility:
 - Written BADC0FFE at address
 0x80
 - Power cycled the board
 - Read address 0x80: result was
 BADC0FFE

8

"All-MRAM" NVRAM Card: Performance

- The Flashtec[™] validation board was not designed for performance assessment
- Hot questions are:
 - 1. How an "All-MRAM" NVRAM card behaves when connected to a host system?
 - 2. Does the different storage paradigm exploited by MRAMs impact the performance/latency?
- In these cases... Simulation is the way!

SSDExplorer

- Complete SSD/NVRAM card simulator
- DRAM simulation with datasheet timings
- Host emulation by means of Qemu
- Overall performance/latency figures

9

Before simulating the "All-MRAM" card, it is mandatory to:

Tune the simulator to track the behavior of a real DRAM/FLASH card

NVRAM card	Configuration
Codename	Flashtec [™] (Microsemi)
Host Interface	PCI-Express Gen3 x8
Host protocol	NVMe 1.1
DRAM size	1 GB
DRAM controller	Single channel
Intel S2600GZ server	Dual Xeon E5-2680 v2 128 GBytes DRAM

Simulation error is less than 1%

Flash Memory Summit 2017 Santa Clara, CA

Measured DRAM/Flash NVRAM ■ Measured DRAM/Flash NVRAM

Simulated DRAM/Flash NVRAM

10

"All-MRAM" Card vs DRAM/Flash Card: Performance with 4KB 100% Random Write

During write the "All-MRAM" card shows the same performance of a standard DRAM/Flash NVRAM card

Flash Memory Summit 2017 Santa Clara, CA

11

"All-MRAM" Card vs DRAM/Flash Card: Performance with 4KB 100% Random Read

■ Measured DRAM/Flash NVRAM Simulated DRAM/Flash NVRAM

During read the "All-MRAM" card shows the same performance of a standard DRAM/Flash NVRAM card

"All-MRAM" Card vs DRAM/Flash Card: Latency with 4KB 100% Random Write

During write the "All-MRAM" card shows almost the same latency as a standard DRAM/Flash NVRAM card

"All-MRAM" Card vs DRAM/Flash Card: Latency with 4KB 100% Random Read

During read the "All-MRAM" card shows almost the same latency as a standard DRAM/Flash NVRAM card

Conclusions

- Final take away: with respect to the DRAM/Flash legacy NVRAM card the "all-MRAM" NVRAM solution does not introduce any significant performance degradation
- We have shown that **STT-MRAM is a viable candidate for replacing DRAM** inside NVRAM cards.
 - And with the upcoming 1 Gbits version this architecture will become even more appealing

...But power consumption and costs have to be evaluated...

Thank you

Q&A