
Accelerating SQL Server with Persistent
Memory

Lee Prewitt
Principal Program Manager

Microsoft
Flash Memory Summit 2017
Santa Clara, CA

1

Technology Evolution

§  Storage technology has made significant strides (capacity, latency, IOPS).

PCIe SSD (NVMe)

SCM (NVDIMM-
N)

Capacity: Large
Latency: High

IOPS: Low

Capacity: Medium
Latency: Medium

IOPS: Medium

Capacity: Medium
Latency: Low
IOPS: High

Capacity: Small
Latency: Very Low
IOPS: Very High

§  SCM Performance breaks assumptions about “slow
storage” in today’s software

§  For the highest performance, use Direct Access interface
(requires app changes)

§  For early adoption, utilize it via the block interface
(requires no app changes)

File Systems and Storage Class
Memory

SCM is a disruptive technology
§  Customers want the fastest performance
§  System software is in the way!
§  Customers want application compatibility
§  Conflicting goals!

Windows Goals for Storage Class
Memory

§  Support zero-copy access to persistent memory
§  Most existing user-mode applications will run

without modification
§  Provide an option to support 100% backward

compatibility
•  Does Introduce new types of failure modes

§  Make available sector granular failure modes for
application compatibility

Introducing a New Class of Volume

§  Direct Access (DAX) Storage Volume
•  Memory mapped files provide applications with direct access to

byte-addressable SCM
–  Maximizes performance

•  DAX mode is chosen at volume format time
–  Why: compatibility issues with various components, examples:

–  File system filters
–  BitLocker
–  VolSnap

•  Some existing functionality is lost
•  DAX Volumes are supported by NTFS

SCM Storage Drivers

§  New type of volume requires a new driver model
•  SCM Bus Driver

–  Enumerates the physical and logical SCM devices on the system
–  Not part of the IO Path

•  SCM Disk Drivers
–  Driver for logical SCM devices
–  Storage abstraction layer to rest of the OS
–  Hardware-specific

–  Supports both in-box or vendor-specific drivers
–  Windows will use a native 4K sector size

§  Introduces new interfaces
•  Expose byte addressable storage functionality
•  Supports management of SCM hardware

Memory Mapped IO in DAX mode

§  On DAX formatted volumes memory mapped sections
map directly to SCM hardware
•  No change to existing memory mapping APIs

§  When an application creates a memory mapped section:
•  The memory manager (MM) asks the File System if the

section should be created in DAX mode
•  The file system returns YES when:

–  The volume resides on SCM hardware
–  The volume has been formatted for byte addressable mode

Memory Mapped IO in DAX mode

§  When a section is created in DAX mode
•  MM asks the file system for the physical memory

ranges for a given range of the file
•  The file system translates the range into one or more

volume relative extents (sector offset and length)
•  The file system then asks the storage stack to

translate these extents into physical memory ranges
•  MM then updates its paging tables for the section to

map directly to the persistent storage

Memory Mapped IO in DAX mode

§  This is true zero-copy access to storage
•  An application has direct access to persistent

memory

§  Important à No paging reads or paging writes
will be generated

Cached IO in DAX mode

§  When cached IO is requested on a DAX enabled volume the
cache manager creates a cache map that maps directly to SCM
hardware

§  Cache manager copies directly between the user’s buffer and
persistent memory
•  Cached IO has one-copy access to persistent storage

§  Cached IO is coherent with memory mapped IO
§  As in memory mapped IO, no paging reads or paging writes are

generated
•  No Cache Manager Lazy Writer thread

Non-cached IO in DAX Mode

§  Sends IO operations down the storage stack to
the SCM storage driver
•  Maintains existing failure semantics for application

compatibility
•  Is coherent with cached and memory mapped IO

File System Metadata in DAX Mode

§  File system metadata will not use DAX mode
sections
•  Meaning paging reads/writes will be generated for all

file system metadata operations
•  Needed to maintain existing ordered write

guarantees for write-ahead logging
§  One or more metadata files may use DAX mode

in the future

Impacts to File System
Functionality in DAX Mode

§  The file system no longer knows when writeable
memory mapped sections are modified
•  The following file system features are now updated

at the time a writeable mapped section is created
–  File’s modification and access times
– Marking the file as modified in the USN Journal (change

journal)
–  Signaling directory change notification

Impacts to File System
Functionality in DAX Mode

§  Direct access to persistent memory by applications eliminates the
traditional hook points that file systems use to implement various
features

§  File System functionality that can not be supported on DAX
enabled volumes:
•  No NTFS encryption support (EFS)
•  No NTFS compression support
•  No NTFS TxF support
•  No NTFS USN range tracking of memory mapped files
•  No NTFS resident file support

Backward Compatibility with SCM
Hardware

§  Block Mode Volumes
•  Maintains existing storage semantics

–  All IO operations traverse the storage stack to the SCM driver
–  Has a shortened path length through the storage stack

–  No storport or miniport drivers (too much latency)
–  No SCSI translations

•  Fully compatible with existing applications
•  Supported by all Windows file systems
•  Works with existing file system and storage filters
•  Block mode vs. DAX mode is chosen at format time

New Volume Device Class
(ScmVolume)

§  New byte addressable partition type
•  Set at format time

§  Why: Prevents non-DAX aware components from
attaching to this new volume class
•  VOLSNAP – no support for volume snapshots
•  BITLOCKER – no support for software encryption
•  3rd Party volume stack filters
•  Improves performance by removing non-DAX aware drivers

IO Stack Comparisons

NTFS /
ReFS

Disk /
ClassPnP

SCM Disk
Driver

StorPort

MiniPort

User Mode

Kernel Mode

App App App

SSD /
HDD SCM SCM

Traditional SCM Block Volume DAX Volume

Volmgr /
Partmgr

Volmgr /
Partmgr

Volsnap Volsnap

NTFS /
ReFS NTFS

SCM Disk
Driver

Volmgr /
Partmgr

C
ac

he
d

IO

M
em

or
y

M
ap

pe
d

§  How do I increase my transaction throughput?
§  How do I reduce my transaction latency?

§  Options:
•  More CPU! 2S system à 4S system
•  More Memory! 128GB à 256GB à 1TB+
•  Faster Storage! HDD à SATA SSD à NVMe SSD

•  SQL Server 2016 “Tail Of Log” Preview on Persistent Memory

More Transactions

In the Past:
§  Copy log records into buffer, building up block
§  Close log block once commit arrives
§  Schedule I/O to persist block on SSD
§  Complete transaction when I/O completes

Faster Transaction Processing via
Persistent Memory Use

With ToL Preview:
1.  Copy log records into buffer, building up

block
2.  Complete transaction when commit arrives
3.  Close log block when full
4.  Schedule I/O to persist full block on SSD

Blue indicates the critical path for a transaction

Native NVDIMM-N Support in
Server 2016

•  Windows exposes a latency-optimized “disk”
device (block interface)

•  DirectAccess (DAX): enlightened apps (SQL
2016) can directly access their data on the
Persistent Memory (PM) device via Load/
Store instructions

•  Use of DAX on NVDIMM-N provides DRAM-
like performance

4K Random Write Thread
Count

IOPS Latency
(us)

NVDIMM-N (Block) 1 187,302 5.01

NVDIMM-N (DAX) 1 1,667,688 0.52

