

Embedded 28-nm Charge-Trap NVM Technology

Igor Kouznetsov

Flash Memory Summit 2017 Santa Clara, CA

- Embedded NVM applications
- Charge-trap NVM at Cypress
- Scaling
- Key Flash macro specs
- 28-nm Flash memory reliability
- Conclusions

Embedded NVM Applications

Focus on NVM monolithically integrated in a System-on-Chip (SoC)

Consumer

- Cost
- Endurance
- Ambient -25C to 85C
- 50-ns access
- 100k endurance

Flash Memory Summit 2017 Santa Clara, CA

Industrial

- Low power
- Cost
- Ambient -40C to 105C
- 25-ns access
- 10k endurance

Automotive

- Performance
- Reliability
- Ambient -40C to 125C
- Code: 20-ns access
- Code: 1k endurance
- Data: 100k endurance

- IoT device shipments will grow from 0.6 billion units in 2017 to 2.3 billion units in 2023¹
 - eNVM is a key enabler of embedded processing and connectivity
 - eNVM costs are holding up adoption (process and test)
 - Low power read and write operations active power
 - Secure program/data storage
 - No compromise on reliability; fast access time

Flash Memory Charge-Trap NVM: Cypress History

- Acquired NVX and its Silicon Oxide Nitride Oxide Silicon (SONOS) IP in 1999
- Put SONOS into production at 0.35-μm node in 2001 and 0.13-μm node in 2007
- Shipped >2 billion PSoC units with SONOS eFlash
- Produced >1 million wafers with foundry partners HH-Grace, UMC, and HLMC

2015

In risk production at 28-nm since Q2 2017

Santa Clara, CA

	SG ¹ MG ²	SG ¹ CG ³
Feature	<u>eCT</u>	SONOS
Node	40-nm	40, 28-nm
Cell Architecture	1.5T, 1 bit/cell	2T, 1 bit/cell
Memory Device	ONO	ONO
Program/Erase Method	HEI/HHI	FN/FN
Ambient Operating Temperature	-40C to 125C	-40C to 105C
Speed/Random Access Time	8 ns	25 ns
Write Endurance	125k cycles	100k cycles
Data Retention	20 years	10 years
Extra Masks beyond Std CMOS	8	5
Applications	Embedded NOR Flash for automotive MCUs	Embedded NOR Flash for consumer and industrial MCUs

³CG: control gate

Flash Memory Summit 2017 Santa Clara, CA

MG

SONOS Program & Erase Operations

- Silicon Oxide Nitride Oxide Silicon (SONOS)
 - A SONOS transistor is a planar, scalable MOS transistor with an ONO stack as the gate dielectric
 - The basis of the NVM function is storage of captured charges in discrete traps in the nitride (N) layer
 - Program and erase operations use uniform channel FN tunneling
 - Requires only five extra masks beyond the standard CMOS process

Flash Memory Summit 2017 Santa Clara, CA

- Cell area scales down
 - Program/erase voltages are held constant since 65-nm
 - Transition from dedicated (DSL) to common (CSL) source line array enables significant reduction in cell area at the same node
- Trade-off exists between the access time and cell area

Santa Clara, CA

	28-nm SONOS	<u>40-nm SONOS</u>
Density	1Mb	1Mb-16Mb
Input data width	32-bit	32-bit
Output data width	64-bit	32-, 64- or 128-bit
Dual Power Supply	0.89 V-1.10V & 2.25 V-2.75 V	0.81 V-1.21 V & 1.62 V-3.63 V
Operating Temperature	-55C to 125C	-40C to 125C
Read access time	25 ns (1.05±0.05 V)	25 ns (1.10±0.11 V)
Read Current	75 μ A/MHz per 64-bit	61 μ A/MHz per 32-bit
Write Endurance	> 10k cycles	> 100k cycles
Data Retention Flash Memory Summit 2017	> 10 years at 110C	> 10 years at 100C

Flash Memory 28-nm Flash Memory Reliability

- Write endurance easily passes 10,000 program/erase cycles at 125C
 - Vt window >1.4 V after cycling with single-pulse program/erase of constant amplitude and duration •
- Retention passes accelerated 48-hour bake at 250C with > 0.7 V window left

11

- Charge-trap Flash technology has several advantages
 - Low cost: only five extra masks beyond the standard CMOS process
 - Low power: 0.9 V power supply, low-current FN/FN program/erase
 - Performance: 25-ns read access time in the standard power supply range
 - Resistant to de-processing; security features
- Cell is scalable even at constant program/erase voltages
- Cell and macro can be tuned to application
 - Consumer, e.g., smart cards: cost (CSL cell), 50 ns read, < 4 ms write time
 - Industrial: 25-ns read access with design techniques (smaller sectors, etc.)
 - Automotive: 8-ns eCT or robust DSL cell

- Cypress technology R&D team in San Jose, CA and Taiwan
- Cypress embedded NVM design team in Colorado Springs, CO and San Jose, CA