

Solving 3D Flash's Error Recovery Problem

Conor Ryan NVMdurance Conor.Ryan@NVMdurance.com

Take Home Messages

- Errors cannot be avoided
 - They need to be handled gracefully
 - BCH doesn't scale well; LDPC is difficult to implement
- SmartECC makes BCH usable with TLC
- LDPC can be simplified
 - Using hard reads only reduces size and power
- No testmode access required
- All sorts of useful information comes from our characterization

- Flash is trimmed by manufacturer to maximize reliability
 - Trade-off between endurance and retention
- Different trade-offs can be chosen
 - Can compromise LLR tables for LDPC
- Flash can be trimmed to particular applications
 - Minimize errors at desired endurance/retention
- However, this requires test mode access
 - Obtaining this can be long, painful and unsuccessful!

The Harsh Reality of Failure

- Read fails will happen
- They are increasingly more likely with 3D TLC
- Will be even more likely with QLC
- How can we minimize the impact of failure?
- What is a pragmatic way to deal with failure so we don't impact SSD?

When a read fails

- BCH
 - Re-read with different read levels
 - Recover to RAID
- LDPC
 - (Possibly) read calibration and re-read
 - Read soft information
 - Decode soft information
 - Recover to RAID

- Trigger rate
 - How often a read fails
- Error Recovery Flow (ERF)
 - How fast and efficient the ERF is at recovering data
 - Plus, how quickly the ERF decides data is unrecoverable

Promoting SSD Reliability

- RBER/ECC
 - Keep RBER low, use powerful ECC
 - BCH doesn't scale well
 - LDPC requires accurate LLR tables and effective ERF, complex to implement
- Active management
 - Make the best possible use of the blocks
- These are delaying the inevitable

- Log-likelihood Ratios
 - Inform LDPC how to decode soft reads
 - How soft information decodes to hard read
- Manufacturers often only give "correlation" tables
 - Your mileage may (and probably will!) vary

- Require a full characterization of chips
- LLR tables are specific to a certain time of life
 - Endurance and retention
- LLR tables are specific to use cases
- Need to be regenerated if extra soft data is needed

LLR Correlation Tables

- Correlation does not mean practical!
- Manufacturers often give "corner cases"
 - 0 cycles, no retention; 0 cycles full retention
 - Full cycles, no retention; full cycles full retention
- The lurking problems
 - Going off book in any way
 - Different cycles/retention; different temperatures
 - Less likely to work as geometry gets reduced

- Bit flips are **not** random
- Many are caused by cell-to-cell interference
- Closer neighbors gives higher interference
 - This is partly why planar flash hit a wall
- More neighbors gives higher interference
 - This is partly why TLC and QLC will be problematic even in 3D flash

- Voltage written to a cell does not remain constant
 - Quality of the cell
 - Number of p/e cycles of the cell
 - Time before read
 - Number of reads since write
- State and activity of neighboring cells

- Blocks consist of vertically-stacked layers of cells
- Cells have neighbors above and below as well as to the side

- Blocks consist of vertically-stacked layers of cells
- Cells have neighbors above and below as well as to the side

The Solution - SmartECC

- We use Machine Learning to **automatically** discover how related cells influence a particular cell value at a given time of life
- SmartECC is a set of rules for flipping bits; sets are specific to a time of life
 - Important because manner of interference varies
 throughout life

Detailed Algorithm

- Perform hard read
- If BER less than ECC hard read capability then return codeword
- Else perform SmartECC Level 1 Recovery
 - 5 sectors toggled out and stored (similar timing to LDPC)
 - If BER less than hard read ECC capability return codeword
- Else perform SmartECC Level 2 Recovery
 - 3-5 further sectors toggled out and stored (60% time penalty over LDPC)
 - If BER less than hard read ECC capability return codeword

Detailed Algorithm

- Perform hard read
- If BER less than ECC hard read capability then return codeword
- Else perform SmartECC Level 1 Recovery
 - 5 sectors toggled out and stored (similar timing to LDPC)
 - If BER less than hard read ECC capability return codeword
- Else perform SmartECC Level 2 Recovery
 - 3-5 further sectors toggled out and stored (60% time penalty over LDPC)
 - If BER less than hard read ECC capability return codeword

Implementation - Discovery

- Perform characterization
- Extract data from devices every 1K cycles
 - Get data at zero and full retention
- Perform Machine Learning
 - Discover neighbor patterns at each checkpoint
- Generate LLR tables for LDPC

Implementation - Practicalities

- Characterization
 - 90 head temperature controlled test array
 - Arria 10-based SSD on Intel/NVMdurance reference design
 - Approximately three weeks
- Machine Learning
 - Cloud based parallel search; 2-3 days

Discovering Neighbor Patterns

- What is the **minimal** number needed?
 - Too many and run-time will be impacted
- Use Machine Learning
 - Discover the minimal set required

Size of the problem

- In TLC with Level 1 it may be possible to brute force the patterns, but...
 - Search space is huge
 - Increases exponentially with each extra bit
 - Increases with depth of characterization
 - Rules change over time
- Level 2 space is larger
- In QLC the space will be much larger

Evolutionary Algorithms

- Machine Learning algorithm based on simulation of natural evolution
- Maintains a **population** of solutions ("individuals")
- Drive by fitness function
 - Measures how good solutions are at solving problem
- Recombine best solutions to create increasingly better ones

Representation

1	1	0	1	1	0	1	1
0	1	0	0	1	1	1	1
1	0	0	1	1	0	1	0
1	1	0	1	0	1	0	0
0	1	0	0	1	1	1	1
0	0	0	1	1	0	0	1
1	0	0	1	1	1	1	1
0	0	0	1	1	0	1	1
1	1	0	1	0	0	1	1

Representation

1	1	0	1	1	0	1	1	1	1	0	1	1
0	1	0	0	1	1	1	1	0	1	1	1	1
1	0	0	1	1	0	1	0	1	1	0	1	0
1	1	0	1	0	1	0	0	1	0	1	0	0
0	1	0	0	1	1	1	1	0	1	1	1	1
0	0	0	1	1	0	0	1	1	1	0	0	1
1	0	0	1	1	1	1	1					
0	0	0	1	1	0	1	1					
1	1	0	1	0	0	1	1					

Recombination

Testing SmartECC

- Device
 - 3D TLC
 - 5K p/e with 4 months retention using LDPC
 - No spec with BCH!
- Conditions
 - Cycle to 5K in 1K increments
 - Retention recorded at 0 and 4 months
 - Devices obtained from three non-consecutive lots
- ECC
 - BCH ranging from 40 to 90

Results – 5K p/e, 4 months

,	ECC	BCH
Note	40	13421
• 864.000	45	5652
codewords tested	50	2235
per level	55	836
	60	285
	65	109
	70	39
	75	16
	80	3
Flash Memory Summit 2017 Santa Clara, CA	85	2

Note

•

Results – 5K p/e, 4 months

Results – 5K p/e, 4 months

Flash Memory Summit

Not all pages are created equal!

- Upper page data
- Middle page data \bullet
 - Lower page data
- Lower page data is typically most reliable

nce

r a

Results by page type

d u r a n c e

Notes

- Only MP contains
 errors
- True for all zero retention plots

Results

1K Cycles, 4Mths Retention

Flash Memory Summit 2017 Santa Clara, CA

Notes

- MP and UP
 consistently worst
- BCH recovers all data with 60 bit ECC
- L1 recovers all data with 60 bit ECC
- MP worst for L1
- L2 recovers all data with 40 bit ECC₄₉

Results

Flash Memory Summit 2017 Santa Clara, CA

Notes

- MP and UP
 consistently worst
- BCH recovers all data with 70 bit ECC
- L1 recovers all data with 60 bit ECC
- MP still worst for L1
- L2 recovers all data with 40 bit ECC₅₀

Notes

- MP and UP consistently worst
- BCH recovers all data with 90 bit ECC
- L1 recovers all data with 85 bit ECC
- L2 recovers all data with 45 bit ECC
- MP worst for L1/L2

- SmartECC does not change the trigger rate
 - Where trigger rate means intervention
- Lowering the hard read ECC raises the trigger rate
- Why bother with SmartECC?
 - Because its implementation is simple

- We implemented a 20 bit BCH ECC engine in a modest FPGA (Intel Altera Cyclone 5)
- Occupied 7K (of 16K) ALUs and 1.3m (of 2.7m) memory bits
- 50 bit ECC used the whole FPGA
- SmartECC requires
 - 532 ALUs and 0.6 Mbit of memory
 - Approx 3% of space and 25% of memory

- Latency is not the issue
 - LDPC soft decode takes the same time as SmartECC Level 1; SmartECC Level 2 is 300uS extra
- FPGA resources is not an issue
 - SmartECC uses a simple comparator arrangement although data needs to be stored between reads
- Trigger rate may be an issue
 - Trade off between lowering the hard bit correction capability and the rate at which time must be taken to recover the data

- Hard ECC capability vs Trigger rate
 - Trigger rate is unaffected by SmartECC
 - But exploiting potential reduction in the power of the ECC engine affects the trigger rate
 - Higher hard ECC gives lower trigger rate

Trade Offs Summary

- High ECC gives low trigger rate
 - But occupies space
- SmartECC L2 is slower than LDPC
 - But occupies far less space
- Low ECC with Smart ECC L2
 - Cheapest in terms of space
 - Slowest in terms of time
- SmartECC L1 virtually the same as LDPC
 - But occupies far less space

- Advice
 - Use highest hard ECC capability available
 - Use in appropriate applications
 - Force to use BCH, FPGA controller, QLC, archiving, etc.
 - Manage wear to prioritize reliable blocks
 - Extensive data on blocks comes free with characterization process
 - Manage wear-out at block level
 - Use NVMdurance Navigator or similar

Generating Solutions

- Perform full characterization with ML-enabled temperature controlled test heads
- Provides
 - LLR tables at 1K p/e intervals
 - Rule based bit patterns for SmartECC module
 - Error models
 - Reliability information at page and block level to inform map and wear-leveling algorithms

- Read Failures are inevitable
 - LDPC too costly and/or difficult for some applications
 - Generating accurate LLR tables is not trivial
- SmartECC use Machine Learning to clean up data
 - Simple sets of rules to flip bits
 - Can use **any** ECC method
 - LLR tables created as a by-product
- Tunable trade off between level of ECC and trigger rate

- SmartECC implemented on working SSD reference platform
 - PCIe NVMe interface; 3D Micron TLC flash
 - Custom channel controller, FTL and 40 bit SmartECC engine
- NVMdurance can automatically discover SmartBCH rules
 - Customized for specific use cases

NVMdurance provide

Contact Us

- SmartECC Rules and ERF to extend BCH to be usable in current generation 3D flash
- SmartLDPC Rules and ERF to enable hard LDPC to be used at lower cost (space, power, etc.)
 - Includes LLR tables and full ERF for LDPC
- Conor Ryan
 - Conor.Ryan@NVMdurance.com
 - Tel (580) 672 9004 or +353 86 816 3653