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* Disclaimer – I could talk about this topic all day, but gien the limited time, I’ll just hit the highlights



Review of IO Determinism

� Goals
� Allow applications to partition SSDs into 

regions with predictable latency

� Features

� Configurable Sets

• QoS Isolated

• Attributes (endurance)

• Multiple Namespaces

� Predictable Latency Modes

• Deterministic IO Windows

Flash Memory Summit 2018

Santa Clara, CA 3



Other Efforts addressing IO 
Determinism

� NVMe ABO
� Negotiation between the SSD and Host on when GC and other 

background operations can be performed

� Open Channel

� Thin SSD controller with FTL running on the host
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So how does IO Determinism impact 

SSD Controller and FTL Architecture?

� Separating Flash die into groups is the 
easy part.  But in order to make them 
truly separate, you need to isolate the 
other associated controller resources!
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• CPUs?
• Local Memory?
• Buffers?
• Hardware Assist?



Basic Anatomy of a SSD Controller

• CPUs for
• Host I/F

• FTL

• Flash Ctrl

• Local CPU memory

• Internal Buffer

• DMAs

• HW Assists

• DDR Controller

• ECC Engines

• Host I/F
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IO Determinism allows drives to be 
configured into multiple sub-drives

� And… configurability has its challenges

� As stated earlier, it’s not just Flash and IO channels that are being 

divided up

� Other internal resources and algorithms are impacted
� CPU

� Buffering

� FTL Management

� Write data processing for multiple streams

� Data protection strategy

� Wear leveling and wear out

� Tracking multiple Write & GC data streams

� And lets not forget managing small die groups isn’t easy
� A sea of blocks and dies becomes a pond
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The subtle things in SSDs that 
create challenges

• Resource consumption on a SSD isn’t just limited to die, channel and 
host bandwidth

• Buffer footprints, bandwidth and tenure vary by workload and WA

• Write data sources often have disparate velocities

• CPU utilization also varies by workload and WA

• Flash programming models need to match host read BW requirements

• Nothing is done in fractions.  Whole blocks, whole pages, whole 
buffers. The more you slice up the drive, the more you lose to 
fragmentation.  Death by fractions, or lack thereof
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FTL & FTL Metadata Changes

� Gotta Split

• To enforce isolation, FTL Metadata 

must reside in the same die group as 

its data

� Can’t afford to store the Metatdata in 

separate die

• In a drive with 32 die, using one die for 

Metadata consume 3.125% of capacity 

(1/32)
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FTL & FTL Metadata changes (continued)

� Think of each FTL journal as a 

stream

• Metadata stream can’t be 

combined with user data – must 

reside in its own blocks

• Why?  Velocity & Garbage 

Collection disparity between User 

data and FTL Metadata

• Like oil and water, they do not 

mix
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Handling Multiple Write Streams

� Each Set is essentially a separate write stream

� How data is striped across die within a stream matters

• At least for read performance and write accumulation buffers

� Why?

• Read performance necessitates striping sequential data across die

• But the larger the stripe, the larger the write accumulation buffer needs to be

• And, each stream needs one – which can substantially increase write buffer 

requirements
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Composition of write performance is 

more complicated that you might think

� Why do writes slow down?

• Simple answer is buffer scarcity

• No place to put the data means you have to wait

• But buffers are expensive, consuming BW, Power and Die area

� Sharing write buffers between sets makes things complicated
• Tenure and velocity disparity between streams impacts determinism

� Outer codes can help, but they are not a panacea 
• Outer codes can be used to recover from program failures, allowing buffers 

to be freed before programming completes

• But, it complicates program failure recovery…
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Data Protection & Related Flash Utilization

� Blocks fail, dies fail, read errors happen
• In an enterprise environment, data loss isn’t general acceptable unless 

there’s a redundant copy of data

� Outer codes and Sets
• Traditional Outer code overhead is too high for sets

• Means no block/die failure protection

• Stronger ECC (inner codes) may be required to prevent read errors

• Can still used for FTL Metadata

• Temporary Outer codes on data still needed for write buffer tenure 

reduction

• Weaker Outer codes may be alternative, but don’t protect against die failure
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Buffer Overhead Increase per Set

� Major contributors

• Host write data accumulation

• GC write data accumulation

• Outer code Die/Program failure protection accumulation

� Minor contributors

• Statistical variability in GC

• Per set data structure overhead

� All that buffer management increases CPU overhead

� How much things increase LARGELY depends on striping scheme
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Conclusions

� Implementing IO Determinism is more complicated than simply 
dividing up die and channel resources among applications

� FTL Metadata requires repartitioning

� Buffer requirements can increase substantially

� Data protection schemes may need to change

� Flash overhead (reducing OP) increases

� CPU overhead increases – requiring more processing power
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