
SSD Architecture for IO Determinism

Tim Canepa

CTO – Stealth Startup

Flash Memory Summit 2018

Santa Clara, CA 1

Topics

• Review of IO Determinism

• Architecting SSDs for IO Determinism

• Conclusions

Flash Memory Summit 2018

Santa Clara, CA 2

* Disclaimer – I could talk about this topic all day, but gien the limited time, I’ll just hit the highlights

Review of IO Determinism

� Goals
� Allow applications to partition SSDs into

regions with predictable latency

� Features

� Configurable Sets

• QoS Isolated

• Attributes (endurance)

• Multiple Namespaces

� Predictable Latency Modes

• Deterministic IO Windows

Flash Memory Summit 2018

Santa Clara, CA 3

Other Efforts addressing IO
Determinism

� NVMe ABO
� Negotiation between the SSD and Host on when GC and other

background operations can be performed

� Open Channel

� Thin SSD controller with FTL running on the host

Flash Memory Summit 2018

Santa Clara, CA 4

So how does IO Determinism impact

SSD Controller and FTL Architecture?

� Separating Flash die into groups is the
easy part. But in order to make them
truly separate, you need to isolate the
other associated controller resources!

Flash Memory Summit 2018

Santa Clara, CA 5

• CPUs?
• Local Memory?
• Buffers?
• Hardware Assist?

Basic Anatomy of a SSD Controller

• CPUs for
• Host I/F

• FTL

• Flash Ctrl

• Local CPU memory

• Internal Buffer

• DMAs

• HW Assists

• DDR Controller

• ECC Engines

• Host I/F

Flash Memory Summit 2018

Santa Clara, CA 6

IO Determinism allows drives to be
configured into multiple sub-drives

� And… configurability has its challenges

� As stated earlier, it’s not just Flash and IO channels that are being

divided up

� Other internal resources and algorithms are impacted
� CPU

� Buffering

� FTL Management

� Write data processing for multiple streams

� Data protection strategy

� Wear leveling and wear out

� Tracking multiple Write & GC data streams

� And lets not forget managing small die groups isn’t easy
� A sea of blocks and dies becomes a pond

Flash Memory Summit 2018

Santa Clara, CA 7
SHARED

SEPARATE

The subtle things in SSDs that
create challenges

• Resource consumption on a SSD isn’t just limited to die, channel and
host bandwidth

• Buffer footprints, bandwidth and tenure vary by workload and WA

• Write data sources often have disparate velocities

• CPU utilization also varies by workload and WA

• Flash programming models need to match host read BW requirements

• Nothing is done in fractions. Whole blocks, whole pages, whole
buffers. The more you slice up the drive, the more you lose to
fragmentation. Death by fractions, or lack thereof

Flash Memory Summit 2018

Santa Clara, CA 8

FTL & FTL Metadata Changes

� Gotta Split

• To enforce isolation, FTL Metadata

must reside in the same die group as

its data

� Can’t afford to store the Metatdata in

separate die

• In a drive with 32 die, using one die for

Metadata consume 3.125% of capacity

(1/32)

Flash Memory Summit 2018

Santa Clara, CA 9

FTL & FTL Metadata changes (continued)

� Think of each FTL journal as a

stream

• Metadata stream can’t be

combined with user data – must

reside in its own blocks

• Why? Velocity & Garbage

Collection disparity between User

data and FTL Metadata

• Like oil and water, they do not

mix

Flash Memory Summit 2018

Santa Clara, CA 10

Handling Multiple Write Streams

� Each Set is essentially a separate write stream

� How data is striped across die within a stream matters

• At least for read performance and write accumulation buffers

� Why?

• Read performance necessitates striping sequential data across die

• But the larger the stripe, the larger the write accumulation buffer needs to be

• And, each stream needs one – which can substantially increase write buffer

requirements

Flash Memory Summit 2018

Santa Clara, CA 11

Composition of write performance is

more complicated that you might think

� Why do writes slow down?

• Simple answer is buffer scarcity

• No place to put the data means you have to wait

• But buffers are expensive, consuming BW, Power and Die area

� Sharing write buffers between sets makes things complicated
• Tenure and velocity disparity between streams impacts determinism

� Outer codes can help, but they are not a panacea
• Outer codes can be used to recover from program failures, allowing buffers

to be freed before programming completes

• But, it complicates program failure recovery…

Flash Memory Summit 2018

Santa Clara, CA 12

Data Protection & Related Flash Utilization

� Blocks fail, dies fail, read errors happen
• In an enterprise environment, data loss isn’t general acceptable unless

there’s a redundant copy of data

� Outer codes and Sets
• Traditional Outer code overhead is too high for sets

• Means no block/die failure protection

• Stronger ECC (inner codes) may be required to prevent read errors

• Can still used for FTL Metadata

• Temporary Outer codes on data still needed for write buffer tenure

reduction

• Weaker Outer codes may be alternative, but don’t protect against die failure

Flash Memory Summit 2018

Santa Clara, CA 13

Buffer Overhead Increase per Set

� Major contributors

• Host write data accumulation

• GC write data accumulation

• Outer code Die/Program failure protection accumulation

� Minor contributors

• Statistical variability in GC

• Per set data structure overhead

� All that buffer management increases CPU overhead

� How much things increase LARGELY depends on striping scheme

Flash Memory Summit 2018

Santa Clara, CA 14

Conclusions

� Implementing IO Determinism is more complicated than simply
dividing up die and channel resources among applications

� FTL Metadata requires repartitioning

� Buffer requirements can increase substantially

� Data protection schemes may need to change

� Flash overhead (reducing OP) increases

� CPU overhead increases – requiring more processing power

Flash Memory Summit 2018

Santa Clara, CA 15

