
RAIN: Reinvention of RAID for the World
of NVMe

Sergey Platonov
RAIDIX

1

NVMe Market Overview

●  > 15 vendors develop
NVMe-compliant servers and
appliances

●  > 50% of servers will have
NVMe slots by 2020

Market needs software to
employ new hardware
capabilities!

2

 Is existing software suitable for NVMe?

We have
benchmarked mdraid
and zfs pools.

Tests are based on
SNIA SSS PTSe.

3

10.1

10.4

5.3

20.4

0.89

0.87

1.1

7.50

0 5 10 15 20 25

MD RAID 5

MD RAID 6

RAID Z

Total drives perf

Throughput Test, GBPS

128k seq write 128k seq read

 Is existing software suitable for NVMe?

4

1959

1902

76

4494

151

108

18

1823

57

40

15

[ЗНАЧЕНИЕ]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

MD RAID 5

MD RAID 6

RAID Z

Total drives perf

IOPS TEST, kIOPS

4k rand write 4k rand rw 65/35 4k rand read

Kernel or not kernel

User level drivers
➕  Remove system call switch overhead
➕  Simplify management of block IO
➕  Ensure direct access to NVMe
➖  Lose POSIX interface and trigger obligatory application rewrite

Linux kernel drivers
➕  Provide block device and support POSIX interface: no need to rewrite

applications and file systems
➕  Show higher in-kernel performance on newer 4.x kernels with system

call optimizations
➖  Linux kernel block layer still needs to be optimized for more IOps

5

New product vision

Our product
Software RAID optimized for NVMe in Linux Kernel

Goals
●  High performance

For single RAID 6 :
○  Up to 30 GBps
○  Up to 4 000 000 IOps
○  Latencies < 0.5 ms

●  No performance loss
in degraded RAID state

●  Low CPU overhead
●  Memory prudent

○  No cache
○  No data copy on datapath

●  Flexibility
○  Local and network drives
○  Media vendor agnostic

6

Product architecture

Components
●  Linux kernel driver
●  RAID management utility

Installation
●  Deployed using rpm or deb

Interaction
●  RAID works with block devices
●  RAID provides a block device 7

Performance principles

●  High performance of RAID checksums calculations and
data recovery
○  necessary for performance in degraded state

●  Lockless datapath
●  High IO handling parallelization without scheduling
●  Efficient data transfer with zero-copy
●  In-kernel tools:

○  per CPU cache aware efficient memory allocator - kmem_cache
○  lockless list
○  stable and high performance nvmeof target and host drivers

8

RAID Calculation Engine

Standard approach to calculation vectorization

●  Vector register packs
GF elements

●  Packed shift operations
●  Packed logical

operations (XOR, AND)
●  Shuffle operations

9

RAID Calculation Engine

Our approach to calculation vectorization

●  Vector contains bits of different
GF elements

●  Only packed XORs
●  Less data move operations
●  Less vector operations

10

IO Handling

Challenge
Update of RAID checksum
in multithreaded workloads

Why
Threads working with the same
stripe can corrupt shared checksums

Our solution
To use lockless algorithms for
calculation of checksum in the thread
that is responsible for the stripe
calculations at the moment

11

Performance test configuration

System configuration
●  Intel Xeon Gold 6130 CPU @ 2.10GHz
●  12 NVMe: Intel SSD DC D3700 Series
●  Hyperthreading and NUMA enabled
●  Centos 7.4, Linux Kernel 4.11.6-1.el7.elrepo.x86_64
●  RAID 6

Tests based on SNIA SSS PTSe
●  Iodepth 32, Numjobs 64
●  IOPs test
●  Latency test

12

Performance testing results

13

14

Block Size (KiB)
Read / Write Mix %

0/100 5/95 35/65 50/50 65/35 95/5 100/0

4k 354887 363830 486865.6 619349.4 921403.6 2202384.8 4073187.8

8k 180914.8 185371 249927.2 320438.8 520188.4 1413096.4 2510729

16k 92115.8 96327.2 130661.2 169247.4 275446.6 763307.4 1278465

32k 59994.2 61765.2 83512.8 116562.2 167028.8 420216.4 640418.8

64k 27660.4 28229.8 38687.6 56603.8 76976 214958.8 299137.8

128k 14475.8 14730 20674.2 30358.8 40259 109258.2 160141.8

1m 2892.8 3031.8 4032.8 6331.6 7514.8 15871 19078

IOPs test

15

IOPs test

16

Average Response Time (ms)

Block Size (KiB)
Read / Write Mix %

0/100 65/35 100/0

4k 0.16334 0.136397 0.10958

8k 0.207056 0.163325 0.132586

16k 0.313774 0.225767 0.182928

Latency test

Challenges

Performance challenge #1
Initial architecture idea was to avoid locks by permanent mapping stripes to
threads responsible for its handling.
It resulted in two times less performance than our goals.

Problem
Scheduling on datapath

Solution
Architecture without
scheduling

17

Challenges

Performance challenge #2
Keep high IO performance while
scaling RAID to new devices

Problem
RAID in 2 configurations should handle
IO in both parts without latency
degradation

Solution
Background restriping with
non-blocking restriping window

18

What is next?

●  Add LRC and Regeneration codes for distributed RAID
○  Reduce number of reads for faster single failure recovery

●  Integrate existing volume manager or create a new one
○  Linux volume manager (LVM), SPDK lvol, ZFS vol, etc.

●  Optimize performance for 3.x kernels

19

