
Open Source Data Reduction for High
Performance Flash Storage

Louis Imershein
Principal Product Manager, Red Hat

Flash Memory Summit 2018
Santa Clara, CA 1

Data Reduction Overview

Flash Memory Summit 2018
Santa Clara, CA 2

▪ Data reduction incorporates two space saving technologies,
compression and deduplication

▪ The goal of data reduction is to drive down the effective cost of
storage by reducing the data footprint

▪ To do that, data reduction has to use processing and memory
resources

How Much Can We Save?

3

Redundant Workflow

● Backups
● Virtual Desktops
● Virtual Servers
● Containers
● Shared Home Directories

Compressible Data

● Databases (textual content)
● Messaging
● Monitoring, alerting, tracing
● Systems and application

logging

75% (4X)50% (2X) 66% (3X) 80% (5X) 83% (6X) +

Go
od

 C
an

di
da

te
s

Savings Potential

Data reduction savings are dependent on data type and workflow

Flash and Data Reduction

• Challenges to developing data reduction solutions center
around:
• resource overhead
• performance requirements

• Two data reduction targets: Backup and Primary
• Primary storage data reduction solutions are very good at using

flash storage to offload meta-data from DRAM, one example is
VDO

4

What is VDO?
● VDO is a Linux device mapper target that provides software data

reduction services at the block level: deduplication and compression
● As a block device, VDO can be used underneath block, file or obejct

storage
● VDO is purpose-built to leverage the capabilities of low-latency

storage (Flash, 3D XPoint, etc…) to control resource costs
● VDO is Linux component first released with Red Hat Enterprise Linux

7.5 as an out-of-tree kernel module, available for several Linux distros
today

● Open Source and GPL as of October 2017! (~165k LOC)
https://github.com/dm-vdo

5

https://github.com/dm-vdo

• Install packages (or clone and build github repo)

• Create VDO volume:
vdo create --name=vdo1 --device=/dev/sdb

• Monitor available physical space:
$ vdostats vdo1

• Monitor available logical space:
$ df

• Grow logical storage pool size:
vdo growLogical --name=vdo1 --vdoLogicalSize=20TB

Or just use the Cockpit user interface (http://github.com/cockpit)

Simple to install and configure

6

Data Reduction Has Three Problems

1. Identifying duplicate items across enormous data sets
2. Mapping many small logical chunks to physical locations
3. Providing low latency access to reduced data

VDO includes two kernel modules that solve different problems:
• uds (universal deduplication service) - solves problem #1
• kvdo (kernel virtual data optimizer) - solves problems #2 and #3

7

UDS: Fast Efficient Indexing

8

Delta Master Index
• Quickly detects new duplicate items
• Unique compressed form uses only 3 bytes per

active entry (representing 64 bytes of data)
• Sparse indexing allows 10x media coverage
• 5 usec average latency

UDS Volume

Page Cache

RAM

Storage

Data

UDS Volume
• Log-structured database of key-value pairs
• Organized for data locality
• Maximum of 2 reads to find a record when

not cached
• 64 KB pages cached for fast lookup
• >98% cache hit rate in small memory cache

Delta
 Master Index

Data DataData

Data DataData

Fixed-size LRU Cache

KVDO: Data Structures

9

Superblock

Block Map Root
(5 B/block)

Slab Summary

Recovery
Journal

Allocator
(32 GB/slab)

Data
(8M blocks less refs & journal)

Ref Blocks
(2K Blocks)

Slab JnI
(256 blocks)

Write Amortization
• Map entries and refcounts journaled
• Data space divided into slabs for fast

recovery and parallelism
• Unique data never re-written
• Explicit refcount management eliminates

garbage collection

Shortcut Processing
• Up to 2,000 I/O requests may be

queued for write
• Logical and physical request maps

allow requests to be satisfied against
pending I/O

• Avoids read-read, read-write,
write-read and write-write hazards

Fast Hashing and Flash Storage

• VDO uses fast, non-cryptographic hashes (MurmurHash3)

• Read verify of existing block used to verify duplicate

• Resource overhead shifted off the CPU to flash storage

10

VDO Compression

11

A ✔

A✔ B C D

VDO

A

A UDS Index

Only compress once - index hashes are on uncompressed block

Logical Device Physical Device

If the new block (“A”) matches against the index, only metadata is written.
UDS index can identify duplicates at >200k blocks/second/core.

VDO: Compression

12

VDO

A

B

CE

I

G

F

H

I

G
A B C D E

H

F

Logical Device Physical Device

Compress fast (LZ4) and leverage multi-core systems

If the new block is unique, it is added to the index and compressed.
Up to 14 compressed blocks can be stored a single physical block.

VDO: Garbage Collection

13

VDO

A

B

CE

I

G

F

J

I

G

Logical Device Physical Device

Track blocks and references in real time, without garbage collection

If a logical block is overwritten with unique data, new space is found.
If no more copies of the old block exist, its space is immediately available.

Compressed blocks are free when all fragments are unreferenced.

A B C D E
I

GF

J

VDO: Resources and Tuning

Resource Requirements:
• RAM: 500 MB + 268 MB per TB of physical storage
• CPU: 40K-50K IOPS per core, depends on CPU and clockspeed

Performance Tunables:
• Cached blockmap - size of logical-to-physical map in memory vs on

media (default is 128MB. 128MB can cover 100GB of logical data)
• Thread settings - various settings, control how VDO scales across

CPU cores

14

Thread Configuration Matters

15

CPU: Intel Xeon Gold 6128 @ 3.4 Ghz, 6 core
 OS: Red Hat Enterprise Linux 7.5

Storage: Intel Optane 280 GB
Filesystem: Xfs

Interested in VDO?
How to get VDO:
● VDO was initially available in Red Hat Enterprise Linux 7.5
● Also now included in Fedora Copr, CentOS 7.5 and Oracle Linux 7 Update 5
● RPM Package Names:

○ vdo - User space utilities
○ kmod-kvdo - Kernel modules for uds and kvdo

● From source via: http://github.com/dm-vdo

How to get involved:
● VDO mailing list: https://www.redhat.com/mailman/listinfo/vdo-devel

○ Patches and discussions welcomed always
● VDO is openly available: https://github.com/dm-vdo

○ Email vdo-devel@redhat.com

16

http://github.com/dm-vdo
https://www.redhat.com/mailman/listinfo/vdo-devel
https://github.com/dm-vdo

