
Scalable Big Data Pipeline over Shared NVMe

August 9th, 2018

Big Data Analytics Architecture

ERP	

RDBMS	

logs	

Sensors	

Machine	

Data sources

Mobile	

Video	

Data Collection Analytics - Real-time
data processing

Results & historic
data store

Apache Kafka

Fast data tier Persistence tier
Aggregation &
streaming Tier

In-memory
database

object store

Traditional
storage array

Fast Data Tier
§  Needs to quickly ingest and process large amounts of

data
§  Needs to make decisions and respond to queries based

on large amounts of data from
‒  Incoming streams
‒  historic data and prior analysis results

§  Aging data is less valuable

è Analytics cannot be I/O bound

è Typically uses in-memory databases

 3	

Fast Data Tier
§  Needs to quickly ingest and process large amounts of

data
§  Needs to make decisions and respond to queries based

on large amounts of data from
‒  Incoming streams
‒  historic data and prior analysis results

§  Aging data is less valuable

è Analytics cannot be I/O bound

è Typically uses in-memory databases

 4	

Scaling the In-Memory DB

§  Approach 1: Buy more
‒  More RAM to fit the data
‒  Higher-end servers: motherboards and CPUs that can support

more DIMMS & memory channels.

è  Could be costly
è  Still limited

5	

Scaling the In-Memory DB [2]
§  Approach 2: Scale horizontally

‒  Add more servers and Distribute the DB into multiple shards
‒  Each shard fits in the hosting node’s memory

è  It works! Overcomes the single node’s memory limit
è  Programmatic and operational complexity overhead

è  Asymmetric behavior intra vs inter-shards
è  Need to re-balance

è Cost Inefficient/Wasteful
è  CPU usage under 20%/node. Gets worst as we scale
è  less than linear scaling: hot spots end up replicated on all nodes

6	

 7

Overcoming the memory limitation

§  We need to scale memory independently
§  We can already do this today with storage

§  Use storage as memory
§  Need memory-grade storage è Low latency NVMe
§  Need a flexibility of access and efficiency of re-use of external

NVMe
§  Deterministic behavior

‒  Low latency from host to non volatile memory
‒  Limited jitter

 8

Implementation Expample

Key enabling
technologies:
§  NVMe JBOF
§  < 8 us latency

NVMe disks
§  IMDT/ScaleMP Newisys NDS-2244 +

24x Intel Optane NVMe

1U	Intel	server	

1U	Intel	server	

Memory Extension via Intel IMDT

VoltDB In-Memory DB Cluster
1TB of effective memory
2x (64MB DDR4 + 2x 375GB Optane NVMe)

NDS-1160G-2S	
Apache Kafka © tier
Pikes-Peak”
2x8 NVMe

OSA-FX60	
Persistence Ttier
Newisys/MPStor All-Flash Array

Data Pipeline Switch
(40/100Gbps Mellanox)

Data Ingest Switch

 9

Results & Conclusion

§  Small performance impact – around 15%
§  YCSB benchmark against the In-memory database shows

‒  10% slower on a 50-50 read/update workload
‒  19% slower on 100% read workload

§  Reasonable cost. Close to 50% the total cost of all DDR
solution.

