

Layer-by-layer Adaptively Optimized ECC for NAND Flash SSD Storing CNN Weights

<u>Keita Mizushina</u>, Toshiki Nakamura and Ken Takeuchi Chuo University, Tokyo, Japan

- Introduction
- Proposed Layer-by-layer Iteration-optimized Low-Density Parity-Check Error Correcting Code (LBL-LDPC)
- Proposed Layer-by-layer Code-length Adjusted Asymmetric Coding (LBL-AC)
- Proposed Layer-by-layer Adaptively Optimized Error Correcting Code (LBL-ECC)
- Conclusion

- Introduction
- Proposed Layer-by-layer Iteration-optimized Low-Density Parity-Check Error Correcting Code (LBL-LDPC)
- Proposed Layer-by-layer Code-length Adjusted Asymmetric Coding (LBL-AC)
- Proposed Layer-by-layer Adaptively Optimized Error Correcting Code (LBL-ECC)
- Conclusion

Concept of This Work

- Train network in data center with GPUs
- Store weight data and infer on Edge devices

SegNet Architecture

• SegNet [2] is deep convolutional encoder-decoder architecture for semantic pixel wise labelling

- Introduction
- Proposed Layer-by-layer Iteration-optimized Low-Density Parity-Check Error Correcting Code (LBL-LDPC)
- Proposed Layer-by-layer Code-length Adjusted Asymmetric Coding (LBL-AC)
- Proposed Layer-by-layer Adaptively Optimized Error Correcting Code (LBL-ECC)
- Conclusion

 Proposed LBL-LDPC decreases decoding time by 14% compared with conventional LDPC ECC

- Introduction
- Proposed Layer-by-layer Iteration-optimized Low-Density Parity-Check Error Correcting Code (LBL-LDPC)
- Proposed Layer-by-layer Code-length Adjusted Asymmetric Coding (LBL-AC)
- Proposed Layer-by-layer Adaptively Optimized Error Correcting Code (LBL-ECC)
- Conclusion

Conventional Asymmetric Coding(AC)

• At high V_{TH} states, many errors occur

 Asymmetric Coding (AC) [5] increases A-state to minimize total errors

1Ynm, TLC NAND flash, @150degC Data-retention time = 4 days, Write/Erase cycles ($N_{W/F}$)=200

Santa Clara, CA

[5] S. Tanakamaru et al., JSSC, vol. 47, no. 1, pp. 85-96, Jan. 2012.

Conventional Asymmetric Coding(AC)

 Flip all bits if "0" is more than "1" and append "1" as flag

Concept of Proposed LBL-AC

Proposed Layer-by-layer AC (LBL-AC) adjusts AC code length
 AC2 (CL: 4) AC2 (CL: 8)

Performance of Proposed LBL-AC

• Acceptable data-retention time increases by 3.3 times

Conventional AC2 (CL : 4) w/ LDPC ECC (iteration = 30)

- Proposed LBL-AC case2 (protect central 4 layers) w/ LDPC ECC (iteration = 30)

Flash Memory Summit Flash Memory Summit • LBL-AC reduces data-overhead by 26%

Result of Proposed LBL-AC

 Proposed LBL-AC decreases data-overhead by 26% compared with conventional AC

	Conventional LDPC ECC	Conventional AC w/ Conventional LDPC	Proposed LBL-AC w/ Conventional LDPC
LDPC decoding time	96 µs	96 µs	96 µs
Flag data overhead rate	0 %	25 % -26	19 %
Acceptable data-retention time	1.0 day	3.3 days 3.3	3x 3.3 days

- Introduction
- Proposed Layer-by-layer Iteration-optimized Low-Density Parity-Check Error Correcting Code (LBL-LDPC)
- Proposed Layer-by-layer Code-length Adjusted Asymmetric Coding (LBL-AC)
- Proposed Layer-by-layer Adaptively Optimized Error Correcting Code (LBL-ECC)
- Conclusion

Layer-by-layer Adaptively Optimized Error Correcting Code (LBL-ECC)

Flash Memory Summit 2018 Layer-by-layer Iteration-Optimized LDPC (LBL-LDPC) Santa Clara, CA Layer-by-layer Code-length Adjusted Asymmetric Coding (LBL-AC)

Performance of Proposed LBL-ECC

Acceptable data-retention time increases by 3.3 times

Result of Proposed LBL-ECC

 Proposed LBL-AC decreases data-overhead by 26% compared with conventional AC

	Proposed LBL-LDPC	Conventional LBL-AC w/ Conventional LDPC	Proposed LBL-AC w/ Proposed LBL-AC
LDPC decoding time	96 µs	96 µs -14	<mark>%</mark> 83 μs
Flag data overhead rate	0 %	25 % - 26	% 19 %
Acceptable data-retention time	1.0 day	3.3 days 3. 3	3x 3.3 days

- Introduction
- Proposed Layer-by-layer Iteration-optimized Low-Density Parity-Check Error Correcting Code (LBL-LDPC)
- Proposed Layer-by-layer Code-length Adjusted Asymmetric Coding (LBL-AC)
- Proposed Layer-by-layer Adaptively Optimized Error Correcting Code (LBL-ECC)
- Conclusion

Conclusion

Flash Memory Summit

 Proposed LBL-ECC extends data retention time by 3.3 times

	Conventional LDPC	Proposed LBL- LDPC (5, 15, 15, 30)	Proposed LBL- LDPC (5, 15, 15, 30) + Proposed LBL- AC Case 2
LDPC decoding time	96 µs	83 µs	83 µs
Flag data overhead rate	0	0	19%
Acceptable data-retention time	1.0 day	1.0 day	3.3 days

Thank you for your attention

This work was supported by JST CREST Grant Number JPMJCR1532, Japan

Soft-decoding LDPC

• Log-likelihood ratio (LLR) is required for LDPC decoding.

[6] C. Kim et al., Symp. VLSI Circ., pp. 196-197, 2011.

Error Prediction (EP-) LDPC

EP-LDPC is 7-times faster reads than Soft-decoding LDPC

Flash Memory Summit 2018 Santa Clara, CA

[7] S. Tanakamaru et al., JSSCC, pp. 2920-2934, 2013.

Advanced Error Prediction (AEP-) LDPC

- TLC NAND Flash memory is sensitive to program disturb errors
- AEP-LDPC can correct more accurate and efficiency by considering with program disturb

EP-LDPC[7]

Considering with only data-retention error

Flash Memory Summit 2018 Santa Clara, CA

[7] S. Tanakamaru et al., *JSSCC*, pp. 2920-2934, 2013.
[8] T. Tokutomi et al., *IEEE IMW*, pp. 99-102, 2014.

AEP-LDPC[8]

Considering with program disturb and data-retention error