

Programmable Storage Controllers Permit Rapid Response to New Technologies Chris Bergman - Burlywood

Flash Memory Summit 2018 Santa Clara, CA

1

What do we mean by "Programmable Storage Controller"?

- Software running on a processor?
 - ARM, Tensilica, etc.
- Configurable hardware engine/sequencer?
 - ECC engine, ONFI/Toggle bus, etc.
- Reconfigurable logic platform?
 - FPGA

All of the above? Yes!

Why is programmability important?

- Increasing NAND node pace and densities
 - 64 layer->96 layer->128 layer 3D NAND (18 months -> 12 months)
 - SLC->MLC->TLC->QLC
 - Lost opportunity if can't deploy on latest nodes on time
- Complexity of the new nodes/densities
 - Programming algorithms
 - Higher error rates (and what we have to do about it)
 - New flash manufacturing entrants in China
- Higher Performance Expectations (NVMe)
 - Requires more hardware automation
 - But flexibility needs to be maintained to support new media and features
- New Applications
 - Computational Storage, Hybrid solutions, Open Compute
 - End customer applications change over the life of a given storage device
- New non-volatile media technologies
 - MRAM, 3D XPoint, ...

What's wrong with the current model?

- Prohibitive ASIC costs
 - Fab NRE
 - Design Engineering
 - Tools/Verification
 - Lost Opportunity Costs
- Lead times
 - Fab (40-100 days)
 - Design/Verification (6-24 months)
 - Packaging, assembly on circuit board, circuit board test (weeks)
 - With a programmable controller this can be weeks to months
- Less Flexibility
 - Stuck with a fixed feature set and capabilities
 - Not quickly scalable
 - Need to guess what may be needed 2-3+ years in advance (more risk)
 - Imagine finding a HW issue during RDT!

Cost & lead times amplify the risks

Flash Memory Summit 2018 Santa Clara, CA

Burlywood

What's changed to make this possible?

- More powerful and integrated processor complexes
 - Multiple 32/64-bit ARM cores
 - Flexible, performant interconnect between cores and logic
- Increased effective gate counts
- Native support for SATA, SAS, PCIe PHYs, DRAM controllers, etc.
- More on chip memory
- More effective gates and capability per \$
- Pushing process to sub 10nm
- All of this allows an FPGA to be used in the way it was meant to be
 - Traditional ASIC staging used FPGAs, but in ways that reduced overall performance and limited feature set

FPGAs are no longer only a development tool

Why is the programmable approach faster?

- Fab lead times
 - Hours vs. 1-3 months
- Firmware/hardware co-development
 - Staged, incremental development
 - Don't need to guess and wait for ASIC to return or use crippled staging vehicles.
- Complementary verification and validation
 - Use ASIC techniques where appropriate
 - Use true in system test for full validation
 - Imagine an ASIC that had millions of real-time test hours prior to tape out!

What are some misconceptions about a Programmable Controller?

- Higher Cost
 - Per component cost offset by fab NRE, design NRE, ASIC tool cost, lost opportunity cost, multiple chip turns
 - Less of a total percentage of the BOM at higher capacities (media dominates)
 - NRE for leading edge process nodes amortized across multiple customers and markets
- Higher Power
 - Less of a total percentage of the power budget at higher capacities
 - Higher performance systems are rarely idle.

Ideal for today's rapidly evolving data centers

Summary

- Programmable controllers.....
 - Allow more rapid development and deployment of new media technologies, architectures, and features
 - Reduce risk
 - Reduce overall solution cost
 - Allow INNOVATION!
- It's real!

References

- https://semiengineering.com/big-trouble-at-3nm/
- https://semiengineering.com/battling-fab-cycle-times/
- https://semiengineering.com/fpgas-becoming-more-soc-like/

Backup/Reference Slides

