

Error Recovery Flows in NAND Flash SSDs

Viet-Dzung Nguyen Marvell Semiconductor, Inc.

Flash Memory Summit 2018 Santa Clara, CA

MARVELL

© 2018 Marvell Semiconductor, Inc. All rights reserved.

- Data Reliability in NAND Flash Memories
- Concept of an Error Recovery Flow (ERF)
- Components of an ERF
- Optimization of an ERF in an LDPC-Based Controller
- Comparison with a BCH-Based ERF

2

Data Reliability in NAND Flash

- NAND flash stores information in different charge levels of NAND flash cells
- In a fresh NAND device, the distributions of threshold voltages around their mean values are very sharp
 - Hence, the number of bits detected erroneously is very small
- In a NAND device stressed by program/erase cycle, retention or read disturb, the distributions become wider
 - Hence, the number of bits detected erroneously is larger

• Error correction codes are employed to correct errors introduced by NAND flash

- Decoder classification:
 - Hard decoders use the hard decision generated by one read from NAND
 - Soft decoders use soft information generated by many reads from NAND

Components of an ERF (cont.)

ERF Optimization Goal

- Recover data with highest probability of success and lowest latency:
 - Some system has specific requirements on host time out
 - A good ERF must produce a good shape of the latency distribution
 - A good ERF must not exhaust hardware and NAND resources that are needed to sustain other traffic

ERF Classification

	Simple/Typical/Static	Complex/Customized/Adaptive
Description	 Hard decode with V_{th} settings from the NAND vendor's read retry table Soft decode with a few hard-coded V_{th} settings RAID 	 Start with a hard decode that uses a customized V_{th} setting (derived by the firmware's media management algorithm) The subsequent steps can be either a hard decode step or soft decode step. Each read in the subsequent steps use a V_{th} setting that is adaptively derived. Early detection of defective NANDs and trigger RAID as soon as possible if RAID is deemed necessary
V _{th} Settings	Pre-determined	Derived on-the-fly
Reliability	Typically meets low-end requirements if stay within or below NAND vendor's NAND stressing boundary	Meet high-end requirements even if NAND is stressed beyond NAND vendor's stressing boundary
Latency	Acceptable average latency, very bad worst case latency	Optimal latency distribution
Optimization complexity	Simple, requires little NAND characterization	Complex, requires extensive NAND characterization

ERF Optimization Strategy

NAND characterization

ERF Optimization

Comparison with BCH-Based ERF

- In BCH-based controllers, the aim of ERF is to find a V_{th} setting in which the number of raw bit errors is less than the correction capability of the BCH code
- Hence, ERF in BCH controllers primarily involves read retries in which the failed page is retried by reading with a different V_{th} setting for next read retry
 - If a particular read retry results in a failure, it does not provide any feedback which can help in choosing the V_{th} for next read retry
 - This means that the long tail in the distribution of retry latency cannot be cut short
- Don't use an LDPC-based ERF that looks like a BCH-based ERF ③
- Advanced tools exists (at least in Marvell's controllers): We collaborate with customers on optimizing ERFs as well!

Questions?

12

© 2018 Marvell Semiconductor, Inc. All rights reserved.