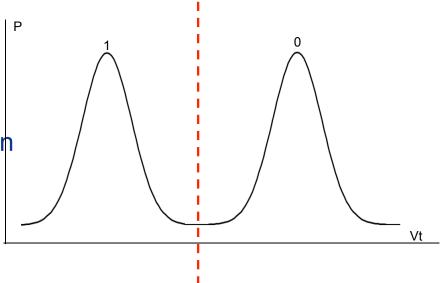


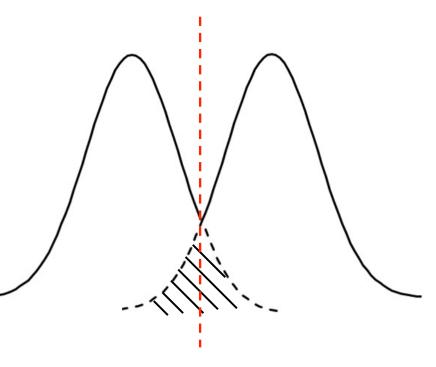
Take Full Advantage of LDPC Soft Bit Decoding

feng.tang@starblaze-tech.com
Starblaze Technology

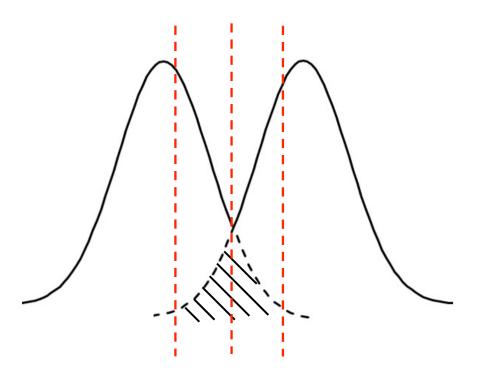


NAND Flash is changing

- Flash evolution
 - 2D -> 3D
 - MLC -> TLC/QLC
- Factors aggravate the distribution
 - PE cycles
 - Retention
 - Disturb
 - •

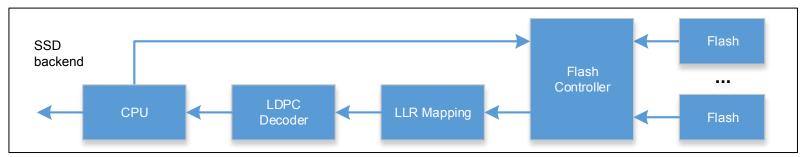

> Soft decoding will be more important

Soft decoding is powerful


- Shadow area decides the raw bit error rate with best Vt
- Vt shift read can not promise successful hard decode when raw bit error rate is high
- > LDPC advantage
 - Hard decoding have slightly better capability compared with BCH
 - Long codeword size promises better capability
 - Soft decoding guarantees EOL data integrity
- Retry/Vt shift read is preferred, but soft decoding is the last straw

What matters

- Soft bit read strategy
 - Number of reads
 - Offset of reads
- LLR mapping strategy
 - 00/01/10/11 will be map to?
- Soft bit decode algorithm
 - Algorithm
 - Quantity
 - Max iteration


When

- Some recovery method Before soft way:
 - Vender provided read retry
 - Customized Vt shift read
 - Self adjustment read (start point/step/count)
 - Offline machine learning read
 - •
- ➤ Then Soft Way!
 - Hard decode first, too much information can be used in soft sensing, LLR map and soft decode algorithm

Dynamic lite machine learning

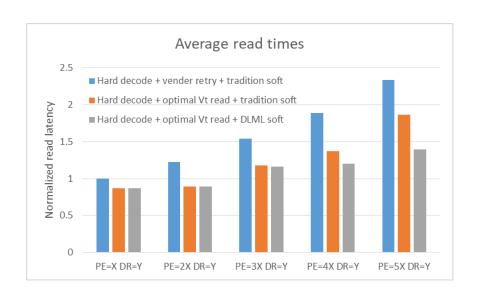
- Hard decode information can be collected by CPU, both successful and fail frames
- CPU will do machine learning based on selected hard decode information and decide what to do next

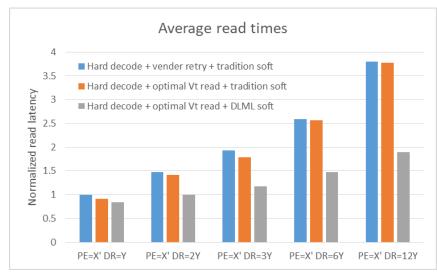
Dynamic lite machine learning

- What we have before hard decode?
 - PE cycle
 - Retention times
 - Page address
 - •
- What we have after hard decode?
 - Hard bit Vt
 - Syndrome weight of each iteration
 - Number of flipped bits in the hard decode
 - Number of "1" in the hard sensing
 - Read cost time
 - Hard read difference of previous read with different Vt
 - Calibrated retention times

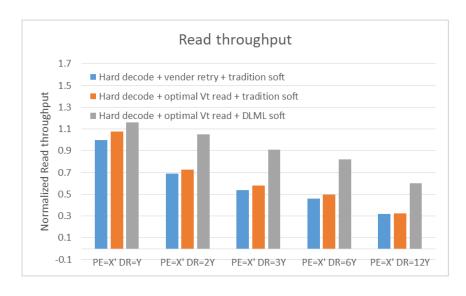
Dynamic lite machine learning

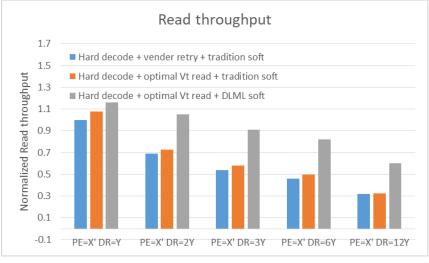
- Soft read is must or not
 - DLML decides if hard decoding with other Vt is enough
- Re read hard bit or not
 - BER of previous hard read is high
- One more or two more or even more reads
- LLR corresponding to soft read
- Any adjustment to soft decode algorithm
 - Normalize factors
 - Max iteration
- Soft decode maybe not work, go for RAID




Performance

- Hard decode + vender retry + tradition soft
- Hard decode + optimal Vt read + tradition soft
- Hard decode + optimal Vt read + DLML soft


Average read latency



Read throughput

Conclusion

- Soft bit is powerful but hard to use
- Offline machine learning use limited information, improved the soft decoding accurate rate
- Online lite machine learning make it works in more efficiency way.

Come by Starblaze Booth #649 for live demo