

Developing IoT-Based Factory Automation Using F-RAM

Douglas Mitchell

INDUSTRIAL SYSTEMS TODAY

Industry 4.0

- The "smart factory,"
 - Cyber-physical systems monitor factory processes and make decentralized decisions.
 - Internet of Things communicate and cooperate both with each other and with humans

Includes

- Interoperability machines, devices, sensors and people
- Information transparency create a virtual copy of the physical world through sensor data in order to contextualize information.
- Technical assistance —support humans in making decisions and solving problems and accomplish tasks that are too difficult or unsafe for humans.
- Decentralized decision-making the ability of cyber-physical systems to make simple decisions on their own and become as autonomous as possible

INDUSTRY 4.0 and IoT

BY 2020

16B Industrial IOT devices will be connected 2X the earth's population

Non-volatile Memory Challenges

- High-reliability NVMs to accurately/completely log data
- Energy-efficient NVMs to extend battery life
- High-performance NVMs to quickly access programs & log data

Why This Matters

- Industry 4.0 relies on processing and storage at the Edge of the Network
- High-speed Robots, CNCs, Motors, Actuators, Valves, etc. operate with precision at high speed
 - Require high resolution of "State" in case of power or communication interruption

High-reliability, instant data capture ensures maximum uptime and accurate recovery

PLC

Circuit Breaker

NVM Choices

- Flash (NAND, NOR)
 - Good for code storage, but long latency and early wear-out for datalogging
- EEPROM
 - High power consumption, wear-out for datalogging
- MRAM
 - Very high power consumption, limited product offerings
- F-RAM
 - Low power consumption, instant write, high endurance

What is Ferroelectric RAM (F-RAM)

F-RAM is a NVM which stores data as a polarization of a ferroelectric material (Lead-Zirconate-Titanate)

What is F-RAM

What is F-RAM

As an electric field is applied, dipoles shift in a crystalline structure to store information

This structure results in a number of advantages

Symmetrical atomic position → Non volatility

Switch in states is instantaneous → Fast writes and Low energy

Based on "atomic position" vs. "trapped charge" → SER immunity and Radiation tolerant

Two symmetrical states and has no reason to degrade → Data retention 100 yrs

Energy (E)

F-RAM is the perfect choice for "Power Efficient Data-logging and Instantaneous Back-up"

F-RAM Data Retention

Primary F-RAM reliability measure is the retention lifetime of a capacitor cell that has been previously stored in a polarization state for an extended time and then written to the opposite polarization state (OS)¹ $\frac{Ea_{(1-\frac{1}{2})}}{Ea_{(1-\frac{1}{2})}}$

Retention Specs for Cypress F-RAMs²:

Cypress F-RAM	Data Retention
AEC-Q100 Grade 3 (G3)	>10 yrs @ 85°C
AEC-Q100 Grade 2 (G2)	>5 yrs @ 105°C
AEC-Q100 Grade 1 (G1)	>11k hrs @ 125°C

The specifications can be converted to multi-temperature profiles

Example for G1 F-RAM³:

Townsuctives	Time	Profile Life
Temperature	Factor	time
(T)	(t)	L(P)
T1=125°C	10%	
T2=105°C	15%	. 10 10
T3=85°C	25%	> 10.46 years
T3=55°C	50%	

¹ This type of retention is called as Opposite State (OS) retention. F-RAM has unlimited Same State (SS) retention life within the specified temperature range

² Conditions: 130nm 2T2C F-RAMs (all AEC-Q-100 Qualified F-RAMs are currently 2T2C)

³ G3 Stress temperature T_s= 125°C, G2 and G1 Stress temperature T_s= 150°C

F-RAM Endurance

Memory endurance is specified as number of times that a memory cell can be written-to or erased

- F-RAM endurance tests are difficult to practically perform due to very high endurance performance of F-RAM.
- Innovative test methodologies are needed to determine the endurance limit of 0.13µm F-RAM product
- Endurance behavior of scribe line test structures i.e., intrinsic material can be measured with acceleration
- F-RAM device endurance can be measured up to 10¹³ cycles through lab tests¹ and extrapolated to 10¹⁵ based on slope of the curve for intrinsic material
- Signal margin vs. cycles for both F-RAM device and intrinsic material shows higher signal margin of the F-RAM device at 10¹⁵ cycles compared with the initial value²

Intrinsic material and device endurance characteristics:

¹ Continuous 1 byte writes on FM22L16 at speed of 110ns cycle time (i.e., 220ns for writing both state): 0.025 days for 10¹⁰ cycles, 2.55 days for 10¹² cycles, 255 days for 10¹⁴ cycles Ref<u>r. http://www.cypress.com/?docID</u>=44702

² Cypress takes a guard band and specs up to 10¹⁴ (instead of 10¹⁵) on datasheets for endurance

2Mb-to-16Mb Excelon™ F-RAM

Features

Excelon-Ultra – 4Mb

- 108-MHz Single Data Rate (SDR)/54-MHz Double Data Rate (DDR)
 Ouad SPI
- Industrial temperature range: -40°C to +85°C

Excelon-Auto

- 2Mb Auto E, 4Mb Auto A
- 50-MHz SPI
- Automotive (AEC-Q100) temperature range grade A: -40°C to +85°C
- Automotive (AEC-Q100) temperature range grade E: -40°C to +125°C

Excelon-LP

- 4Mb, 8Mb
- 20-MHz SPI (Commercial), 50-MHz SPI (Industrial)
- Ultra-low (0.10-µA) hibernate current
- Ultra-low (0.75-μA) deep power-down current
- Ultra-low (1.00-µA) standby current
- Commercial temperature range: 0°C to +70°C
- Industrial temperature range: -40°C to +85°C

Common Features for Excelon-Ultra/Auto/LP

- Operating voltage range: 1.71–1.89 V, 1.80–3.60 V
- 100-trillion read/write cycle endurance
- 100-year data retention

Density	Standby Current (Typ.)	Active Current (Typ.)	Packages
2Mb	1μΑ	3mA	SOIC (8)
4Mb	1µA	3mA	SOIC (8), GQFN (8)
8Mb	1µA	3mA	GQFN (8)
16Mb	1µA	3mA	SOIC (8), GQNF (8)

IoT Dataloggers

- Fast Writes
- Low Power
- Infinite endurance
- >F-RAM is the premium solution