
An NVMe-based FPGA
Storage Workload Accelerator

Dr. Sean Gibb, VP Software
Eideticom

Flash Memory Summit 2018
Santa Clara, CA

1

Acceleration
•  Storage I/O Bandwidth

rapidly increasing
•  Storage workloads taxing

on host CPU
•  Hyperconverged storage

exacerbates problem
•  FPGAs provide

compelling solutions for
storage workloads

•  NoLoad = NVMe Offload Flash Memory Summit 2018
Santa Clara, CA

2

Host
CPU

NVMe	
SSD

NVMe	
SSD HDD RDMA

NIC

NoLoad
Accel.
Card

PCIe	Bus

TM

NoLoad Accelerator

Flash Memory Summit 2018
Santa Clara, CA

3

COTS PCIe FPGA Card

NoLoad Bitfiles

U.2 FPGA Card
Cloud Servers i.e.

Amazon F1

Why NVMe?

•  NVMe provides:
•  Low latency
•  High throughput
•  Low CPU overhead
•  Multicore awareness
•  QoS awareness

Flash Memory Summit 2018
Santa Clara, CA

4

•  Accelerators require:
•  Low latency
•  High throughput
•  Low CPU overhead
•  Multicore awareness
•  QoS awareness

Why develop an maintain a driver when NVMe capabilities align so well with
accelerator needs and you can have world-class driver writers working on your driver?
Real question is “Why not NVMe?”

Architecture
•  Host CPU communicates with

accelerators via NVMe controller using
NVMe commands

•  NVMe controller pushes and pulls
commands and data via DMA engine

•  NVMe controller is in-house developed
soft controller on a RISC-V

•  Board has external DDR for
accelerators that require large data
storage

•  Controller supports command queue
and data CMB (using portion of DDR)

•  Developed an accelerator wrapper to
handle details of NVMe

Flash Memory Summit 2018
Santa Clara, CA

5

NoLoad			Accelerator	Board

FPGA

Host
CPU

PCIe	Controller	and	
DMA	Engine

NVMe	Controller

Accelerators

DDR	Controller

DDR

PCIe

DDR

TM

CMB

NVMe for Accelerators
•  Presents as NVMe 1.3 device with multiple namespaces

•  One namespace per accelerator
•  Accelerators map to namespaces and are discovered using identify

namespace
•  Vendor specific fields provide accelerator specific information

•  Configuration using in-situ data path configuration or vendor specific
command

•  Input data and in-situ configuration are transferred using NVMe Writes
to the namespace associated with the accelerator

•  Output data and in-situ status are transferred using NVMe Reads to the
namespace associated with the accelerator

Flash Memory Summit 2018
Santa Clara, CA

6

NVMe for Accelerators

•  Our in-house NVMe controller supports advanced features including
queue and data CMB, SGL, and NVMe-oF

•  We also support peer-to-peer (P2P) operation
•  No customized drivers are required – all inbox drivers!
•  Leverage industry-standard NVMe test tools

•  FIO and nvme-cli
•  Assist with deployment and benchmarking

•  Take advantage of rich NVMe ecosystem
•  Can leverage servers and storage systems developed for NVMe

Flash Memory Summit 2018
Santa Clara, CA

7

libnoload

•  Developed a user API to assist with common tasks
associated with accelerator over NVMe

•  Provides C and C++ libraries
•  Handles discovering NoLoad adapters and

enumerating accelerators on the adapters
•  Provides support to lock/unlock accelerators
•  Provides thin wrappers over system calls for writing

data to the accelerators and reading results back
from the accelerators

•  Includes support for either synchronous or
asynchronous transfers

•  Handles seamless integration with our accelerator
interface IP

•  API is BSD licensed and available via our public
github

Flash Memory Summit 2018
Santa Clara, CA

8

SPDK

Management

nvme-cli
nvme-of
…

libnoload

Applications

Userspace

Hardware

OS

Controller Performance

Flash Memory Summit 2018
Santa Clara, CA

9

•  Results for single RISC-V core
controller implementation

•  Saturating the bus for ≥ 32kB
block transfer sizes for Gen3x8

•  Saturating the bus for ≥ 16kB
block transfer sizes for Gen3x4

•  Latency for small blocks is <10µs
•  Focus to date has been on

accelerators with ≥16kB block
size

•  Working on multicore RISC-V
system that drastically improves
small block size performance

0

1

2

3

4

5

6

7

8

0.5KB 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB

T
h
ro
u
g
h
p
u
t	
(G
B
/s
)

Block	Size

Gen3x8 U.2	(Gen3x4)

Case Study: ISA-L EC

•  Implemented an RS(32,4) EC accelerator:
•  ISA-L compatible
•  Supports 16kB and 32kB block sizes

•  Saturates PCIe Gen3x8 throughput with 1.5 cores and Gen3x16
(or Gen4x8) with 3 cores

•  Modified ISA-L performance tests in less than an hour to use
NoLoad NVMe accelerator

•  Roadmap includes ZFS integration with accelerator

Flash Memory Summit 2018
Santa Clara, CA

10

Case Study: Compression

•  Implemented deflate and inflate accelerators:
•  zlib/gzip compatible

•  A single deflate core is capable of > 1GB/s throughput
•  Peer-to-peer offers reduced CPU usage and memory bandwidth
•  Have P2P demo of deflate/inflate acceleration with Xilinx and

NVMe-oF demo with Broadcom at FMS
•  Acceleration over NVMe using U.2 device
•  Has 3 deflate cores and 2 inflate cores to saturate PCIe Gen3x4 build

Flash Memory Summit 2018
Santa Clara, CA

11

Case Study: Compression

Flash Memory Summit 2018
Santa Clara, CA

12

calgary.1G cal4k.1G

Engine Compression Ratio Throughput Compression Ratio Throughput

ZLIB-1 on CPU [2] 2.62 81 MB/s 29.56 340 MB/s

QAT-8955 [3] 2.60 1.46 GB/s 7.30 2.85 GB/s

Eideticom-H [2,4] 2.22 2.04 GB/s 35.81 2.97 GB/s

Eideticom-F [2,4] 2.12 2.19 GB/s 27.93 3.14 GB/s

1.  Intel, "Programming Intel QuickAssist Technology Hardware Accelerators for Optimal Performance", April 2015, URL:
https://01.org/sites/default/files/page/332125_002_0.pdf .

2.  Tests were performed on a single core of an Intel i5-6500 @3.2GHz machine running Ubuntu 16.04.
3.  Intel QuickAssist 8955 with six compression cores on it’s ASIC chipset. All of the compression cores were used for this test [1].
4.  FPGA test were performed on a NoLoad with three compression cores. The -H option provides higher compression while the -F option provides higher data

throughput (~ same area)

