

NVM PCIe[®] Networked Flash Storage

Peter Onufryk Microsemi Corporation

Flash Memory Summit 2018 Santa Clara, CA

1

PCI Express (PCIe)

Specification defined by PCI-SIG

- www.pcisig.com
- Packet-based protocol over serial links
 - Software compatible with PCI and PCI-X
 - Reliable, in-order packet transfer
- High performance and scalable from consumer to Enterprise
 - Scalable link speed (2.5 GT/s, 5.0 GT/s, 8.0 GT/s, 16 GT/s, and 32 GT/s)
 - Gen5 (32 GT/s) is still being standardized
 - Scalable link width (x1, x2, x4, ..., x32)
- Primary application is as an I/O interconnect

PCIe Characteristics

Scalable speed

- Encoding
 - 8b10b: 2.5 GT/s (Gen 1) and 5 GT/s (Gen 2)
 - 128b/130b: 8 GT/s (Gen 3), 16 GT/s (Gen4) and 32 GT/s (Gen5)

Scalable width: x1, x2, x4, x8, x12, x16, x32

Generation	Raw Bit Rate	Bandwidth Per Lane Each Direction	Total x16 Link Bandwidth
Gen 1*	2.5 GT/s	~ 250 MB/s	~ 8 GB/s
Gen 2*	5.0 GT/s	~500 MB/s	~16 GB/s
Gen 3*	8 GT/s	~ 1 GB/s	~ 32 GB/s
Gen 4	16 GT/s	~ 2 GB/s	~ 64 GB/s
Gen 5	32 GT/s	~4 GB/s	~128 GB/s

*Source - PCI-SIG PCI Express 3.0 FAQ

NVM ExpressTM (NVMeTM)

Flash Memory Summit

- Two specifications
 - 1. NVM Express (PCIe)
 - 2. NVM Express over Fabrics (RDMA and Fibre Channel)
- Architected from the ground up for NVM
 - Simple optimized command set •
 - Fixed size 64 B commands and 16 B completions ٠
 - Supports many-core processors without locking ٠
 - No practical limit on the number of outstanding • requests
 - Supports out-of-order data deliver ٠

PCIe SSD = NVMe SSD

Ideal NVM Fabric

Property	ldeal Characteristic
Cost	Free
Complexity	None
Performance	High
Power consumption	None
Standards-based	Yes
Scalability	Infinite

Flash Memory Summit

PCIe Fabric

Dynamic Partitioning

Multi-Host I/O Sharing

Storage Functions

- Dynamic partitioning (drive-to-host mapping)
- NVMe shared I/O (shared storage)
- Ability to share other storage (SAS/SATA)
- Host-to-Host Communications
 - RDMA

- Ethernet emulation
- Manageability
 - NVMe controller-to-host mapping
 - PCIe path selection
 - NVMe management
- Fabric Resilience
 - Supports link failover
 - Supports fabric manager failover

- A high-performance fabric means
 - High bandwidth
 - Low latency
- Increasing bandwidth is easy
 - Aggregate parallel links
 - Increase link speed (fatter pipe)
- Reducing latency is hard
 - Transfer latency is typically a small component of overall latency
 - Other sources of latency:
 - Software (drivers)
 - Complex protocols
 - Protocol translation
 - Fabric switches/hops

- Media Access Time
 - Hard drive: Milliseconds
 - NAND flash: Microseconds
 - Next-generation NVM: Nanoseconds

The PCIe Latency Advantage

■ NVMe Direct Attach ■ NVMe-oF Target ■ NVMe-oF Host ■ Fabfic ■ Other

Latency data from Z. Guz et al., "NVMe-over-Fabrics Performance Characterization and the Path to Low-Overhead Flash Disaggregation" in SYSTOR '17

PCIe Fabric Characteristics

Property	ldeal Characteristic	PCle Fabric	Notes
Cost	Free	Low	PCIe built into virtually all hosts and NVMe drives
Complexity	None	Medium Complexity	 Builds on existing NVMe ecosystem with no changes PCIe fabrics are an emerging technology Requires PCIe SR-IOV drives for low-latency shared storage
Performance	High	High	High bandwidthThe absolute lowest latency
Power consumption	None	Low	No protocol translation
Standards based	Yes	Yes	Works with standard hosts and standard NVMe SSDs
Scalability	Infinite	Limited	 PCIe hierarchy domain limited to 256 bus numbers PCIe has limited reach (cables) PCIe fabrics have limited scalability (less than 256 SSDs and 128 hosts)

Flash Memory Summit Persistent Memory and Next Gen. NVM

NVMe and Memory Operations

Controller Memory Buffer (CMB)

- PCI memory space exposed to host (byte addressable)
- May be used to store commands and data
- Contents do not persist across power cycles
 and resets
- Persistent Memory Region (PMR)
 - PCI memory space exposed to host (byte addressable)
 - May be used to store data
 - Content persist across power cycles and resets

Storage is Not Just About CPU I/O Anymore

• NVMe together with a PCIe fabric allows direct network-to-storage and accelerator-to-storage communications

Example:

- 1. Data transferred from network to NVMe CMB
- 2. NVMe block write operation imitated from CMB to NVM
- ... sometime later ...
- 3. NVMe block read operation initiated from NVM to CMB
- 4. GPU/accelerator transfers data from NVMe CMB for processing

- NVMe Storage Functions
 - Dynamic partitioning (drive-tohost mapping)
 - NVMe shared I/O (shared storage)
- Direct accelerator-to-NVMe and network-to-NVMe transfers
- Byte-addressable persistent memory

- PCIe fabrics build on the existing PCIe and NVMe ecosystem
 - Work with standard NVMe SSDs, OS drivers, and PCIe infrastructure
- PCIe fabrics support both byte-addressable memory and traditional storage operations
- PCIe fabrics are well-suited for applications that require low cost, the absolute lowest latency, and limited scalability
 - NVMe SSD sharing inside a rack and small clusters
- PCIe fabrics are not well-suited for long-reach applications or where a high degree of scalability is required
 - NVM Express over Fabrics (NVMe-oF[™]) is well-suited for these applications