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Elementary Quantum Mechanics, R.W. Gurney, 2nd ed., Cambridge University Press, 1940 



Tunneling in Solid State Memories 
•  2-D NAND 

•  Charge tunneling to and from a Floating Gate 
•  3-D NAND 

•  Charge tunneling to and from: 
•  Silicon Nitride (Samsung, Toshiba, WD-SanDisk, Hynix) 
•  Floating gate (Intel, Micron) 

•  Classic SONOS 
•  Charge tunneling to and from silicon nitride 

•  STT-MRAM 
•  Electron tunneling between magnetic metals 
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3-D NAND 
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Classic SONOS 
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Tunneling Damage 
•  Rule of Thumb: 

•  Tunneling creates more damage in thicker tunnel dielectrics 
•  What is thick and what is thin? 

•  >/~ 3.5nm is THICK (2-D and 3-D NAND) 
•  </~ 3.5nm is THIN (Classic SONOS and STT-MRAM) 

•  What is damage and what are the consequences? 
•  Charge trapping:  

•  Threshold voltage shifts (in MOS-based memories – NAND and Classic SONOS) 
•  Shifts in Current-Voltage characteristics 

•  Stress induced damage:  
•  Limited retention (in MOS-based memories – NAND and Classic SONOS 
•  Wear out and breakdown Santa Clara, CA 

August 2018 
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The Golden Thread of Tunneling 
- From Fundamental Physics to Technological Innovation (1) 

Santa Clara, CA 
August 2018 

 
11 

FUNDAMENTAL 
 PHYSICS 

1928 

MOSFET 1960 

FLOATING GATE 1967 

CHARGE TRAP 
1967-68 

EEPROM 
1978 

FLASH 
1984 

Fowler-Nordheim 

Kahng & Sze* 

Lenzlinger 
& 

Snow 

Keshavan & Lin 

Atalla 

Kahng 

Wegener 
et al. 

Harari* 

Frohman-Bentchkovsky & Lenzlinger 

Masuoka et al. 

* FMS Lifetime Achievement Recipients 



The Golden Thread of Tunneling 
From Fundamental Physics to Technological Innovation (2) 
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The Golden Thread of Tunneling 
From Fundamental Physics to Technological Innovation (3) 
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The Golden Thread Continues:  
       STT-MRAM: A Unique Tunneling Conundrum 
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•  Low	Write	Error	Rate	needs	large	tunnel	current	
–  Limits	endurance	due	to	oxide	wear	out	mechanism	

•  High	endurance	with	low	Write	Error	Rate	needs	
reduced	tunnel	current	

–  Make	Free	Layer	magnetically	less	“stiff”	
–  Reduce	MTJ	area	
–  Use	special	design	techniques	(see	“The	Engine”	

presentation)	
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Tunneling Conclusions 

•  A long and illustrious history 
•  The foundation of many solid state memory technologies 
•  Creates damage and must be monitored 

•  Circuits and systems can take advantage of the physics knowledge 

•  Continues to grow in importance: 
•  3-D NAND evolution 
•  STT-MRAM 
•  Other 3-D solid state memory approaches 
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Tunneling in Silicon Valley 
     Fairchild 1967-68 
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