—

Hewlett Packard
Enterprise

Persistent Memory and HPC

Ena ing New Programming Paradigms

Yavve Emherceaoi
Dave Emberseon
Distinguisned [echnoelogist

HPC Aadvanced lecnnoelegy; EXasCale,
eMberson@npe.com

Q)

N FEederal Programs

Memory-Driven HPC Architecture

| I—
Hewlett Packard
Enterprise

Memory-Driven HPC Design Study

—Define a notional system architecture
—High performance Gen-Z memory-semantic fabric
—Extreme scale and capacity
—Processor and GPU agnostic

—0O(10s of PiBs) of highly resilient fabric-attached memory (FAM)
—Byte addressable, non-volatile

—Comprehensive software stack definition

—Seamless convergence of HPC and Cloud workloads (traditional HPC, data
analytics, Al)

—New APIs for FAM access and resilient runtime
—Perform in depth application-specific performance modeling

—

Hewlett Packard
Enterprise

Memory-Driven HPC Architecture

Compute Nodes I/O Nodes
1 2 O(10k+) — (High
ingestion bandwidth
DRIAM DRIAM DRIAM ' via InfiniBand or Ethernet)
CPU [— 1o
CPU CPU CPU
//// DRAM
]
Gen-Z Memory Interconnect > CPU /10

Fabric-attached
non-volatile
memory (FAM)

—

Hewlett Packard
/|l Enterprise

New Programming Paradigms for
Memory Driven HPC

| I—
Hewlett Packard
Enterprise

ldealized Workflow for HPC and Data Analysis

Global non-volatile memory May be aided by
hardware accelerators

\

> Analysis
threads

Streaming data

> Ingest
threads

Raw
data

|

Summaries *
Queries
. Q
uery M memory
threads == ==]p LONger-term data
_ data store store
Responses

—

Hewlett Packard
Enterprise

Non-Volatile Fabric-Attached Memory Enables New Possibilities

—Simplified programming model: OpenFAM proposal
— Globally accessible shared data structures in FAM visible to all participating compute threads
— Efficient one-sided data access; pass pointers — reduced message passing overhead

—New runtime model: Task model with work-oriented synchronization

— Calling task spawns workers; blocks until work is completed (traditional PGAS barriers block
PEs until other PEs reach the synchronization point)

— Better load balancing and robust performance for skewed and variable workloads; processes
are equally able to service requests and analyze any part of the dataset

— Simplified coordination: processes don’'t need to exchange messages to establish common
view of global state

— State is maintained in highly resilient FAM; compute nodes and FAM fail independently, so
persistent state in FAM will survive failures of processes or compute nodes

— Any other worker can pick up where the failed worker left off
— Checkpointing is no longer necessary

—

Hewlett Packard
Enterprise

OpenFAM API

Kim Keeton, Sharad Singhal
kimberly.keeton@hpe.com,
sharad.singhal@hpe.com

Enterprise

OpenFAM: Programming API for Fabric-Attached Memory

—Inspired by OpenSHMEM (http://openshmem.org): open source partitioned
global address space (PGAS) library with one-sided communication, atomic and
collective operations

—Used to access/manage persistent fabric-attached memory (FAM)
—FAM is persistent; data can live beyond program invocation.

—One-sided/unmediated access to fabric-attached memory

—

Hewlett Packard
Enterprise 9

http://openshmem.org/

OpenFAM software stack

Programming
framework

Global fabric-
attached memory
services

Hardware-, firmware-
and fabric-assisted
functionality

—

Hewlett Packard
Enterprise

OpenFAM library

Fabric-attached
memory management

Name Service

One/two-sided
messaging

Load/store direct
access to FAM

RDMA operations

Atomics

Gather/scatter

Notifications

10

OpenFAM concepts

Processing Elements
(PEs)

Data items

—

Hewlett Packard
Enterprise

Compute Nodes + Locally-Attached Memories (LAMs)

i i ;
e N\ ([e N /. oo)
.l - .. - i O l. l.
= s e " ¥

Global Shared Non-volatile Memory (aka Fabric-Attached Memory (FAM))

11

Regions vs. data items

—Regions permit definition of sections of FAM with different characteristics to
accommodate different data needs.

—Useful to permit multiple regions associated with a given job to accommodate
different data needs. Examples:

—No redundancy for communication or scratch space
—Redundancy for computation results

—Named regions of FAM enable sharing between PEs of a given job and also
between jobs (for persistent data)

—Region forms basis for heap allocator in memory management routines
—Data items are allocated using heap allocator

—

Hewlett Packard
Enterprise 12

Descriptors

—Descriptors are opague read-only data structures that uniguely identify a location in FAM
and permissions required to access that location

—Descriptors are portable across OS instances
— Use base + offset addressing
— Can be freely copied and shared across processing nodes by the program

typedef struct { typedef struct {
int accessPermissions; // flags indicating access permissions Fam_Descriptor descriptor; // descriptor pointing to memory region
long regionld; // region ID for this descriptor Fam_RedundancyLevel redundancyLevel,
size_t offset; // offset w/in region for start of descriptor’s memory I/l redundancy options for this region
size_t size; // size (in bytes) of memory associated with descriptor /Il futures: additional parameters, such as quality of service
} Fam_Descriptor; } Fam_RegionDescriptor;
—

Hewlett Packard
Enterprise 13

API classes of interest

—Initialization

—Query

—Allocation

—Data path

—Atomics

—Memory ordering
—Collectives (barriers)

[

Hewlett Packard
Enterprise

~

Presenter
Presentation Notes
Ongoing/future work:
+ Resilience
New notion of barrier: work completion-based barrier
+ Dynamic workload management

Initialization APIs

— shmem_init: collective to allocate and initializes OpenSHMEM
library resources

— shmem_my_pe: returns number of calling PE
— shmem_n_pes: returns number of PEs for a program

— shmem_finalize: collective to release OpenSHMEM library
resources. Only terminates the OpenSHMEM part of program, not
entire program.

— shmem_global_exit: routine that allows any PE to force
termination of entire program

— shmem_ptr: returns pointer to data object on specified PE
(permits ordinary ld/st access)

—

Hewlett Packard
Enterprise

— int fam_initialize(Fam_Options *options): allows worker PE to join
a group at job initialization or on demand

Creates/locates coordination data structures in FAM
Adds info for this process executable to those structures

Open question: access confrol mechanism
— Default: Unix style user/group/other

— Also possible: PKI: private/public key pairs or access tokens

Open question: what additional options are required/desired? (see data
management slide for region creation)

— void fam_finalize(char *group): disconnects the PE from the app.
Only terminates the OpenFAM part of the program.

— void fam_exit(int status): allows any PE to force termination of
the entire program.

15

Presenter
Presentation Notes
Also possible: PKI: private/public key pairs or secret keys (access tokens)

Notes from 10/16 discussion:

FAM_init should be the equivalent of advertising to all workers where the shared data structures reside in FAM. Workers effectively join a standby queue.
Open question: push vs. pull model: only eligible to pull/steal work once worker has joined the standby queue.
Push-based: centralized scheduler assigns work to eligible workers.
There should be a barrier after FAM_init, to ensure that all workers are ready to do work.
Determining when “all” workers are ready: implicit assumption of a timeout after initiation, which is monitored through heartbeats.
Work-stealing queue:
* dynamic parallelism: start with single worker, who may spawn other tasks. New workers can join and start stealing tasks.
Spark: integrates YARN or some other cluster scheduler to find out how many resources are available. Not dynamic.
TODO: work through examples of well-known systems (SHMEM, Spark) as well as new models (e.g., resilience, work-stealing), mapping FAM APIs to those other systems. If we do this right, other systems will be specific instances of our general API.

Notion of pe isn’t a direct analog for our world, if we’re dynamically reallocating work and/or changing the number of active workers.
Useful to have the notion of a “stable” number of (logical) PEs for a period of time, to ensure that partitioning of work could be done consistently (e.g., matrix and vector for SpMV). Could change underlying physical number of workers, while leaving the number of logical PEs fixed.
Changing the number of PEs would likely require a barrier/change in epoch, to allow us to repartition the work (in push-based work allocation). Less clear what that means for pull-based work allocation, since the work could be dynamically reallocated.

Nic’s proposal:

Threading modes:
	FAM_THREAD_SINGLE - program is single threaded
	FAM_THREAD_FUNNELED - program is multi-threaded but only the main thread uses FAM
	FAM_THREAD_SERIALIZED - program is multi-threaded but only one thread at a time calls FAM
	FAM_THREAD_MULTIPLE - program is multi-threaded and any thread can call FAM at any time

Application Programming Interface
	
fam_init
	description:
		initialize the OpenFAM runtime
	args:
		(opt)threading - support requested (default is FAM_THREAD_SINGLE)
	return:
		success or failure
	
fam_finalize
	description:
		shutdown runtime
	args:
		none
	return:
		none
	

Query APIs

— shmem_my_pe: returns the number of the calling PE — char **fam_listOptions(void): lists known options for the FAM

library
— shmem_n_pes: returns number of PEs running in a program

— const void* fam_getOption(char *foptionName): query FAM library
for an option

— void fam_setOption(char *optionName, void *option): set a name -
> option mapping. Options can be of arbitrary type.

— void fam_register(char *name, Fam_Descriptor *descriptor):
register mapping of name -> data itemFAM descriptor with name
service.

— Assumptions: a name is unique within its region, and a descriptor may
be associated with multiple names

— Note: region names are automatically registered

— void fam_unregister(char *name, char *regionName): unregister
name -> FAM descriptor mapping for data item in region
regionName

— Fam_Descriptor *fam_lookup(char *itemName, char *regionName):
look up data item by name

— Fam_RegionDescriptor *fam_lookupRegion(char *name): look up
region by name

—

Hewlett Packard
Enterprise 16

Presenter
Presentation Notes
Notes:
Namespaces could be created explicitly, or implicitly as part of fam_init()

Need equivalent to lookup namespace that’s already created.
Need equivalent to grow/shrink a namespace.

Allocation APIs (region management)

—

Hewlett Packard
Enterprise

Region APIs: manage creation, destruction of regions

— Fam_RegionDescriptor = fam_createRegion(char *name, long size,
int permissions, Fam_RedundancyLevel level, ..): allocates region
of size bytes in FAM, with associated options

— Region can be further allocated through heap management APIs (see
next slide). One heap allocator per region.

— Regions are long-lived and automatically registered with name service

— System may impose system-wide or user-dependent limits on individual
and total region allocations

— void fam_destroyRegion(Fam_RegionDescriptor *descriptor):
destroys the region

— Employs appropriate delayed reclamation to accommodate ongoing
users

17

Presenter
Presentation Notes
Notes:
Implementations may round up to the nearest page size multiple.
System may impose system-wide or user-dependent limits on individual and total region allocations
Namespaces could be created explicitly, or implicitly as part of fam_init()

Need equivalent to lookup namespace that’s already created.
Need equivalent to grow/shrink a namespace.

Allocation APIs (data item / heap management)

SHMEM’s symmetric heap management APIs FAM heap allocator APIs: manage data item allocation from region

— Notes: all routines call shmem_barrier_all before returning to — Fam_Descriptor *fam_allocate(char *name, size_t nbytes, int
ensure all PEs participate in memory allocation. User must call permissions, Fam_RegionDescriptor *region): allocates space
routines with identical argument(s) on all PEs. within a region

— shmem_malloc: return pointer to block allocated from shared — void fam_deallocate(Fam_Descriptor *descriptor): used by PE to
symmeftric heap indicate that it’s done with allocation associated with descriptor
— void *shmem_malloc(size_t size) — Note: expect that this will trigger delayed reclamation, in case another

PE is accessing descriptor, or unfil it is more optimal for reclamation
— shmem_free: deallocate block associated with ptr pass

— void shmem._free(void "ptr) — void fam_resizeRegion(Fam_RegionDescriptor *descriptor, size_t

— shmem_realloc: change size of ptr’s block to size nbyfes): change size of region allocation

— Note: shrinking size of region may make descriptors to data items

— void *shmem_realloc(void *pftr, size_t size) e I 2)
within the region invalid.

— shmem_align: returns pointer to aligned block allocated from

. . : . : :
shared symmetric heap void fam_changePermissions(Fam_Descriptor *descriptor, int

permissions): change permissions associated with a descriptor
— void *shmem_align(size_t alignment, size_t size)

—

Hewlett Packard
Enterprise 18

Presenter
Presentation Notes
Omitted:
fam_align: returns pointer to aligned block allocated from FAM heap
void *fam_align(namespace_descriptor, size_t alignment, size_t size)

Q: what does it mean to free persistent memory? Do we need to explicitly keep reference counts?
Q: do we assume that FAM is persistent? If so, need to extend to include persist operations, naming, etc.?
For mmap’d regions, GlobalToLocal and LocalToGlobal can translate between pointer types.
* Local pointers: VAs
* Global pointers: handles to region ID, offset
Potential advantage: we can support multiple named global heaps within an application. Both shmem and fam permit application separation by having per-application “global” heaps.
Many of these calls (open, map) could be buried in the initialization routines.

fam_create
	description:
		creates a FAM block
	args:
		name - name of block
		size - number of bytes
		(opt)alignment - byte alignment
		(opt)zero - true/false to zero contents
		(opt)attributes - (i.e., redundancy, latency)
	return:
		handle to FAM block

fam_resize
	description:
		resizes a FAM
		
fam_destroy
	description:
		destroys FAM via handle
	args:
		handle - handle to block
		(opt)zero - true/false to zero contents
	return:
		success or failure
	
fam_connect
	connect to named FAM
	fills attributes struct
	return handle
	
fam_disconnect
	disconnect from FAM via handle

Data path APIs: get / put

SHMEM blocking:

— void shmem_put(TYPE *dest, const TYPE *source, size_t nelems,
int pe): blocking write to remote PE’s memory
— shmem_p puts a single element

— Returns after data is copied out of source array. Two successive puts
may deliver data out of order unless shmem_fence is used.

— void shmem_get(TYPE *dest, const TYPE *source, size_t nelems,
int pe): blocking read from remote PE’s memory

— shmem_g gets a single element
Non-blocking:

— void shmem_put_nbi(TYPE *dest, const TYPE *source, size_t
nelems, int pe): non-blocking write to remote PE’s memory

— void shmem_get_nbi(TYPE *dest, const TYPE *source, size_t
nelems, int pe): non-blocking read from remote PE’s memory

— Note: non-blocking calls require shmem_quiet to ensure
completion; may arrive out of order

—

Hewlett Packard
Enterprise

Note: these operations copy data between FAM and local memory

— void fam_put(void *local, Fam_Descriptor *descriptor, size_t offset,
size_t nbytes): write nbytes from PE’s local memory to FAM
descriptor (+ offset)

— Assumption: fam_put is non-blocking, with host bridge returning
completion of operation.

— void fam_get(Fam_Descriptor *descriptor, void *local, size_t offset,
size_t nbytes): read nbytes from FAM descriptor (+ offset) to PE’s
local memory

— Assumption: fam_get is blocking.

— Notes/questions:

— If needed, in the future we can extend the API to provide both blocking
and non-blocking calls for both put and get.

19

Presenter
Presentation Notes
For any of these requests, there’s no guarantee that the bytes of large transfers will be delivered in order.

Data path APIs: scatter/gather accesses

— shmem_iput: copies strided data to specified PE Constant stride

— void shmem_iput(TYPE *dest, const TYPE *source, ptrdiff_t dstride, ptrdiff_t sstride,

. . — void fam_scatter(void *local, Fam_Descriptor *descriptor, long firstltem,
size_t nelems, int pe)

long nitems, long stride, size_t nbytes): copies data from contiguous
structure in local PE memory to strided locations within FAM. Copies
nitems of length nbytes each to offsets starting at firstltem with stride.

— shmem_iget: copies strided data from specified PE
— void fam_gather(Fam_Descriptor *descriptor, void *local, long firstltem, long

nitems, long stride, size_t nbytes): copies data from strided locations within
FAM to a contiguous structure in local PE memory. Copies nitems of length
nbytes each from offsets starting at firstltem with stride.

— void shmem_iget(TYPE *dest, const TYPE *source, ptrdiff_t dstride, ptrdiff_t sstride,
size_t nelems, int pe)

Indexed

— void fam_scatter(void *local, Fam_Descriptor *descriptor, long nitems, long
*itemIndex, size_t nbytes): copies data from contiguous structure in local
PE memory to non-contiguous locations within FAM. Copies nitems of
length nbytes each to indexes specified in itemIndex.

— void fam_gather(Fam_Descriptor *descriptor, void *local, long nitems, long
*itemIndex, size_t nbytes): copies data from non-contiguous locations
within FAM to a contiguous structure in local PE memory. Copies nitems of
length nbytes each from indexes specified in itemindex.

—

Hewlett Packard
Enterprise 20

Presenter
Presentation Notes
TODO: check arguments here.

Data path APIs: direct access (map/unmap)

Note: these operations permit subsequent direct load/store access
to fabric-attached memory.

— void *fam_map(Fam_Descriptor *descriptor): maps a data item
from FAM into the PE’s address space

— void fam_unmap(void *local, size_t nbytes): unmaps a data item
from the PE’s address space

—
Hewlett Packard
Enterprise 21

Atomics APIs

— SHMEM fetfching roufines: return original value and optionally
update remote data in single atomic operation. Return after data
has been delivered to local PE.

— shmem_fetch: atomically fetches value of remote data object
— shmem_swap: atomic swap to remote data object
— shmem_cswap: atomic conditional swap on remote data object
— shmem_finc: atomic fetch-and-increment on remote data object
— shmem_fadd: atomic fetch-and-add on remote data object
— SHMEM non-fetching routines: update remote memory in single
atomic operation. Non-blocking: routine starts the atomic

operation and may return before execution on remote PE. Need
shmem_{quiet, barrier, barrier_all} o force completion.

— shmem_set
— shmem_inc: atomic increment on remote data object

— shmem_add: atomic add on remote symmetric data object

—

Hewlett Packard
Enterprise

RDMA operations

— OpenFAM fetching routines:

32b and 64b integer: fetch, swap, compare-and-swap, add, subfract,
min, max, and, or, xor

Unsigned 32b and 64b integer: compare-and-swap, add, subtract, min,
max

128b integer: compare-and-swap

Float/double: add, subtract, min, max

— OpenFAM non-fetching routines:

32b and 64b integer: add, subtract, min, max, and, or, xor
Unsigned 32b and 64b integer: add, subtract, min, max

Float/double: add, subtract, min, max

22

Presenter
Presentation Notes
Examples
C11:
TYPE shmem_fadd(TYPE *dest, TYPE value, int pe);

C/C++:
TYPE shmem_<TYPENAME>_fadd(TYPE *dest, TYPE value, int pe);

Collectives APIs

— Note: all collectives are blocking and return on completion — void fam_barrier(char *group): registers a PE’s arrival at a barrier,

_ ' . . and suspends PE execution unfil all other Pes arrive at barrier.
— shmem_barrier_all: registers PE arrival at barrier. Suspends PE

execution until all other PEs arrive at barrier and all local and
remofte memory updates are completed.

— As an initial step, we assume a barrier that implements semantics
similar to shmem_barrier_all.

: . . — Notes on desired barrier semantics:
— shmem_barrier: same as shmem_barrier_all, but with respect to

subset of PEs — SHMEM defines barriers in terms of a fixed set of PEs reaching a
particular point, and doesn’t tolerate failures

— shmem_broadcast — For resilience, we want to redefine barrier to be in terms of completed

— shmem collect. shmem fcollect work (regardless of which PEs complete the work)
- , - — No failures: equivalent to shmem_barrier_all

— shmem_alltoall, shmem_alltoalls — Failures: runtime system needs to reallocate work for failed PE
— Reduction operations

— And, max, min, sum, prod, or, xor

— shmem_wait: waits for a variable on the local PE to change (after
update by remote PE)

—

Hewlett Packard
Enterprise 23

Presenter
Presentation Notes
Does (our subset of) Gen-Z provide support for these reductions? If so, are they atomic operations?
Can the Gen-Z media controller report when something changed (i.e., for a primitive that waits for variable to change)?

Memory ordering APIs

— shmem_quiet: waits for completion of all outstanding put,
atomics, memory store and non-blocking put and get routines to
symmeftric data objects issued by PE to any/all remote PEs

— void shmem_quiet(void)
— shmem_fence: assures delivery order of put, atomics, and memory

store routines to symmetric data objects issued by PE to a
particular tfarget PE

— void shmem_fence(void)

— Basic interpretation: all operations before shmem_quiet/fence
must complete before any operations after shmem_quiet/fence

—

Hewlett Packard
Enterprise

— void fam_fence(void): waits for all outstanding memory
operations between PE’s local memory and FAM to complete

— Noftes:

— It can be used to enforce ordering of outstanding FAM operations from

local memory

— Fence/quiet distinction between a single target PE vs. all target PEs

probably doesn’t make sense here, unless we want to call out individual

memory controllers.

— This has the semantics of shmem_quiet. We call it fence rather than
quiet, to be more consistent with mfence/sfence.

24

Presenter
Presentation Notes
Open questions:
Can bridge distinguish between individual PEs on a node, or does it just enforce the fence for all operations from the node as a whole?
This requires Gen-Z to report completion, not just dispatch; does it?
Is it possible for Gen-Z media controller to enforce fences on all requests from all PEs to a particular memory region?

OpenFAM Status

—Some sample applications “ported” and running in simulation

—API defined and presented to the OpenSHMEM Steering Committee. OSC
has created a Memory Model subcommittee to study adopting OpenFAM
concepts in OpenSHMEM 2.0 scheduled for 2020 release.

—Draft API specification released on github at
nttps://github.com/OpenFAM/AP| and open for public comment

—Comments be addressed to Kim Keeton (kimberly.keeton@hpe.com) or
Sharad Singhal (sharad.singhal@hpe.com)

—

Hewlett Packard
Enterprise

25

https://github.com/OpenFAM/API
mailto:kimberly.keeton@hpe.com
mailto:sharad.singhal@hpe.com

=

Hewlett Packard
Enterprise

	Slide Number 1
	Memory-Driven HPC Architecture
	Memory-Driven HPC Design Study
	Memory-Driven HPC Architecture
	New Programming Paradigms for Memory Driven HPC
	Idealized Workflow for HPC and Data Analysis
	Non-Volatile Fabric-Attached Memory Enables New Possibilities
	OpenFAM API
	OpenFAM: Programming API for Fabric-Attached Memory
	OpenFAM software stack
	OpenFAM concepts
	Regions vs. data items
	Descriptors
	API classes of interest
	Initialization APIs
	Query APIs
	Allocation APIs (region management)
	Allocation APIs (data item / heap management)
	Data path APIs: get / put
	Data path APIs: scatter/gather accesses
	Data path APIs: direct access (map/unmap)
	Atomics APIs
	Collectives APIs
	Memory ordering APIs
	OpenFAM Status
	Slide Number 26

