

Next-Generation NVMe-Native Parallel Filesystem for Accelerating HPC Workloads

Liran Zvibel CEO, Co-founder WekalO @liranzvibel

WekalO Matrix: Full-featured and Flexible

Distributed Coding, Scale-out metadata, Fast Rebuilds, End-to-End DP

Instantaneous Snaps, Clones, Performance Tiering to S3, DR, Backup

InfiniBand or Ethernet, Hyperconverged or Dedicated Storage Server

Why NVMe-oF parallel FS?

Flash Memory Summit o Local copy architectures were developed when 1GbitE and HDDs were standard

- Modern networks on 100Gbit are 100x faster than SSD
- o It is much easier to create distributed algorithms when locality is not important
- o 4KB IOs latency similar to local FS, bigger IOs parallelize, so even lower latency

Only PFS for NVMe-oF, PFS over S3 Flosh Memory Summit Faster than burst-buffer + traditional PFS

WEKA.IO

Scale and Value

Software Architecture – Keep out of kernel

Flash Memory Summit

- Runs inside LXC container for isolation
- SR-IOV to run network stack and • NVMe in user space
- Provides POSIX VFS through lockless queues to WekalO driver
- I/O stack bypasses kernel
- Scheduling and memory management also bypass kernel
- Metadata split into many Buckets Buckets quickly migrate
 no
 hot spots
- Support, bare metal, container & hypervisor

Santa Clara, CA

- o A protocol developed in 1984 trying to solve a 2018 problem
- o pNFS tried to fix NFS but failed when metadata workloads exploded
- Legacy parallel file systems like Lustre and GPFS cannot handle billions of small files

WEKA IO

• And they require a PhD to operate

- o Shared, Parallel file system written for NVMe
- POSIX Client runs on GPU Servers
- o Cluster of servers provide high performance file services from NVMe
- o Low latency networking on InfiniBand or Ethernet

 Training "data lake" stored on low cost object storage for best cost Flash Memory Summit 2018
Santa Clara, CA

GPU Performance vs. Alternatives

https://www.theregister.co.uk/2018/06/07/pure_beats_netapp_at_ai/

45,000 40,000 35,000 30,000 25.000 20,000 쿱, 15,000 Through 10.000 5.000 0 ResNet 152 Inception V3 Google Net AlexNet ResNet 50 Local NVMe WekalO

Inference Benchmarks vs Local NVMe

Deep Learning Requirements

Actually very close to HPC problems...

Store a vast amount of data

- Effectively "stage" working set back on fast storage, for efficient access
- o High bandwidth, low latency
- o Very good metadata performance, traverse files quickly
 - Billions of files per directory, huge namespaces
- Very high single host performance
- Support multiprotocol (S3, HDFS, SMB, NFS)

SSD vs HDD pricing (per gb ratio)

WEKA.IO

Source: Hyperion research https://www.storagenewsletter.com/2018/08/07/flash-storage-trends-and-impacts/

HPC only cares about throughput, right?

- NAND is cheaper for IOPS (and obviously latency) for several years now
- HDD stats: 160MB/sec ; \$0.02/GB capacity for 10TB devices
- o 3.84TB TLC devices read at 1700MB/sec ; so faster than 10 HDDs
 - Total HDD cost needed to read at 1700MB/sec → \$2000; avg per NAND device \$0.52/GB
 - Already cheaper today!
- o 7.68TB QLC devices coming next year writing at 1000MB/sec; 6 HDDs needed
 - Total HDD cost needed to read at 1000MB/sec → \$1200; avg per NAND device \$0.16/GB
 - Next year QLC will be cheaper for write throughput
 - Endurance will probably not hold for checkpointing; but anywyas small capacity that TLC makes sense for

Future of HPC storage is NAND FLASH

- o Currently HDDs still make sense for some workloads
- In a year (and obviously later) HPC storage should steer towards NAND FLASH technologies
- Parallel FS for NVMe-oF require different data structure, and algorithms based on modern workloads (scaling metadata, small IOPS, etc)
- HPC applications should consider NAND FLASH only for active workload; other media (tape;optics; etc) for archival capacity

WEKA.io • •