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Edited version of slide from Balint Fleischer’s talk: 
Flash Memory Summit 2016, Santa Clara, CA
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Growing AI Investments but Few Deployed at Scale

Survey of 3073 AI-aware C-level Executives

Source:(“Artificial(Intelligence:(The(Next(Digital(Frontier?”,(McKinsey(Global(Institute,(June(2017

Out of 160 reviewed 
AI use cases:

88% did not 
progress 
beyond the 
experimental 
stage

But successful early 
AI adopters report:

Profit margins
3–15% 
higher than 
industry 
average

20%
AI in 
Production

80%
Developing, 
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Contemplating
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In This Talk:
• AI and ML: A quick overview

• ML Application trends as relevant for Storage

• Opportunities for using ML inside Storage
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What is Machine Learning and AI?
• AI: Natural Language Processing, Image 

Recognition, Anomaly Detection, etc.
• Machine Learning: Supervised, 

Unsupervised, Reinforcement, Transfer, etc.
• Deep Learning: CNNs, RNNs etc.
• Common Threads

• Training
• Inference (aka Scoring, Model Serving, 

Prediction)

AI

Machine
Learning

Deep
Learning
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A Typical ML Operational Pipeline
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Libraries LibrariesMachine Learning, Deep 
Learning, SQL, Graph, CEP, etc.
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Data

Data Repositories SQL
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A Sample Analytics Stack: (Partial) Ecosystem
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Trend 1: How ML/DL Workloads Think About Data
• Data Sizes

• Incoming datasets can range from MB to TB 
• Models are typically small. Largest models tend to be in deep neural networks and 

range from 10s MB to single digit GB 
• Common Structured Data Types

• Time series and Streams
• Multi-dimensional Arrays, Matrices and Vectors

• Common distributed patterns
• Data Parallel, periodic synchronization
• Model Parallel
• Straggler performance issues can be significant
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Trend 1: How ML/DL Workloads Think About Data
• The older data gets – the more its “role” changes

• Older data for batch- historical analytics and model reboots
• Used for model training (sort of), not for inference

• Guarantees can be “flexible” on older data
• Availability can be reduced (most algorithms can deal with some data loss)
• A few data corruptions don’t really hurt !
• Data is evaluated in aggregate and algorithms are tolerant of outliers
• Holes are a fact of real life data – algorithms deal with it

• Quality of service exists but is different 
• Random access is very rare 
• Heavily patterned access (most operations are some form of array/matrix)
• Shuffle phase in some analytic engines
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Trend 2: Need for Governance

• Examples  
• Established: Example: Model Risk Management in Financial Services
• https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf

• Emerging: Example GDPR on Reproducing and Explaining ML 
Decisions
• https://iapp.org/news/a/is-there-a-right-to-explanation-for-machine-

learning-in-the-gdpr/

• Emerging: New York City Algorithm Fairness Monitoring
• https://techcrunch.com/2017/12/12/new-york-city-moves-to-establish-

algorithm-monitoring-task-force/

https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf
https://iapp.org/news/a/is-there-a-right-to-explanation-for-machine-learning-in-the-gdpr/
https://techcrunch.com/2017/12/12/new-york-city-moves-to-establish-algorithm-monitoring-task-force/
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Trend 2: Need for Governance

• ML is only as good as its data
• Managing ML requires understanding data provenance 

• How was it created? Where did it come from? When was it valid?
• Who can access it? (all or subsets)? Which features were used for what?
• How was it transformed?
• What ML was it used for and when?

• Solutions require both storage management and ML management
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Trend 3: The Growing Role of the Edge

• Closest to data ingest, lowest latency.
• Benefits to real time ML inference and  

(maybe later) training

• Varied hardware architectures and 
resource constraints

• Differs from geographically distributed 
data center architecture 

• Creates need for cross cloud/edge data 
storage and management strategies IoT Reference Model
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Trend 4: The Changing Role of Persistence

• For ML functions, most computations today are in-memory
• Data load and store are primary storage interaction
• Intermediate data storage sometimes used
• Tiered memory can be used within engines

• For in-memory databases, persistence is part of the core engine
• Log based persistence is common

• Loading & cleaning of data is still a very large fraction of the 
pipeline time
• Most of this involves manipulating stored data
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Trend 5: The Growth of Streaming Data

• Continuous data flows and continuous processing
• Enabled & driven by sensor data, real time information feeds
• Several variants with varied functionality

• True Streams, Micro-Batch (an incremental batch emulation)

• The performance of in-memory streaming enables a convergence 
between stream analytics (aggregation) and Complex Event 
Processing (CEP)

• Bring need for stream optimized data stores
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Trend 6: The ML Job Functions

• Multiple ML roles interact with data 
• Data Scientist
• Decision Scientist
• Data Engineer

• ML roles need to collaborate with Operations roles for successful 
Operational ML. 

• Requires data access controls, access management to ensure ML 
consistency and governance
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Storage for ML: Challenges and Opportunities
• Ingest Speeds (Particularly for Deep Learning Workloads)
• Data Management for ML Workloads
• Governance and the Challenges of Regulation, Data Access 

Control and Access Management
• The Edge
• Streaming Data
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Storage for ML: Examples
• RDMA data acceleration for Deep Learning (Ex. from Mellanox)

• Time series optimized databases (Ex. BTrDB, GorrillaDB)

• API pushdown techniques and Native RDD Access APIs (Ex. Iguaz.io)

• Lineage: Link data and compute history (Ex. Alluxio/formerly Tachyon)

• Memory expansion (Ex. Many studies on DRAM/Persistent Memory/Flash 
tiering for analytics)
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In This Talk:
• AI and ML: A quick overview

• ML Application trends as relevant for Storage

• Opportunities for using ML inside Storage
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ML for Storage: How to Use ML to Improve Storage?
• Caching

• Adapting caching policy using online learning can have significant benefits
• Workload classification 

• Quantify similarity between workloads
• Track workload changes
• Learning workload mixes 

• Learning for storage tuning 
• Data distribution / tiering
• Reconfiguration of parameters, tiers, placement and layout

• Failure Prediction
*Taken'from'NSF'Vision'Workshop'AI'and'Storage'subteam report
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ML for Storage: How to Use ML to Improve Storage?
• Challenges

• Training data may be limited before decisions must be made
• Historical data is helpful. Telemetry data can be used for this purpose but 

telemetry may need to be adjusted
• Firmware revs/data format changes
• Production ML deployment and tuning is a challenge

• Examples of ML use in Storage
• Public industry usages from Pure Storage, Netapp, etc.
• Research examples (algorithms, experiments) published at  HotStorage

Workshops, FAST (File and Storage Technologies) Conferences 
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Takeaways
• The use of ML/DL in enterprise is at its infancy

• Some requirements understood,  many still emerging

• These apps put ever larger pressure on performance, data 
management and provenance 

• Opportunities exist to significantly improve storage and memory 
for these use cases by understanding and exploiting their priorities 
and non-priorities for ML data
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Additional Resources
• Operational ML at http://www.mlops.org

• Articles on the practical challenges of ML in production, including provenance and 
governance

• Netapp: Lessons Learned Processing 70 Billion Datapoints in the Hybrid Cloud 
(https://www.slideshare.net/Hadoop_Summit/lessons-learned-processing-70-
billion-data-points-a-day-using-the-hybrid-cloud)

• Mellanox/ParallelM – Deep Learning acceleration/management 
(http://www.mellanox.com/blog/2017/10/teslas-autopilot-teaches-us-devops-high-
performance-ai-powered-applications/)

• Upcoming NSF Vision report on Storage for 2025

• Research at HotStorage, FAST, USENIX ATC

http://www.mlops.org/
https://www.slideshare.net/Hadoop_Summit/lessons-learned-processing-70-billion-data-points-a-day-using-the-hybrid-cloud
http://www.mellanox.com/blog/2017/10/teslas-autopilot-teaches-us-devops-high-performance-ai-powered-applications/
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