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A Big Data Application:
Personalized Genome
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“Comprehensive characterization of complex structural variations =
in cancer by directly comparing genome sequence reads,” Moncunill V. & Gonzalez S., et al., 2014 LRRC4C



Cluster System for Personalized Genome
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A Cheaper Alternative Using
Hardware-Accelerated SSD
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Success with Important Applications

Graph analytics Key-value cache
with billions of vertices with millions of users
10x Performance Comparable performance
1/3 Power consumption 1/5 Power consumption

“GraFBoost: Using accelerated flash storage for external graph analytics,” ISCA 2018
“BlueCache: A Distributed Flash-based Key Value Store,” VLDB 2017
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Storage for Analytics

Fine-grained,
Irregular access
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Random Access Challenge in Flash Storage

Flash DRAM
Bandwidth: ~10 GB/s ~100 GB/s
Accgss o El
Granularity:
8192 Bytes 128 Bytes

Wastes performance by not using most of fetched page

Using 8 bytes in a 8192 Byte page uses 1/1024 of bandwidth!



Reconfigurable Hardware Acceleration

Field Programmable Gate Array (FPGA)

B |

Stratix* 10
13G280LNZF43E3v0S

Program application-specific hardware
High performance, Low power

Reconfigurable to fit the application

amazon EC2 /N Azure  |«EM




Future of
Reconfigurable Hardware Acceleration

High Availability Easy Programmability
Amazon EC2 Bluespec
Intel Accelerated Xeon Xilinx HLS
Accelerated SSD platforms Amazon F1 Shell

Normal to do HW/SW codesign
(Like with GPU computing)



Benefits of In-Storage Acceleration

Acceleration

-

Host < > >

Storage

Lower latency, higher bandwidth to storage
Reduce data movement cost
Lower engineering cost

Most data comes from storage anyways




The Three Pillars of
Competitive Flash-Based Analytics

Capacity Algorithm Acceleration
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Large Graphs are Found Everywhere
In Nature

Human neural Structure of Social
network the internet networks

TB to 100s of TB in size!

1) Connectomics graph of the brain - Source: “Connectomics and Graph Theory” Jon Clayden, UCL
2) (Part of) the internet - Source: Criteo Engineering Blog
3) The Graph of a Social Network — Source: Griff’s Graphs



Various Models for Graph Analytics

Vertex-Centric

Pregel,
GraphlLab,
TurboGraph,
Mosaic,
FlashGraph,
GraphChi,

Edge-Centric

X-Stream,

Linear Algebraic

CombBLAS,
GraphMat,
Graphulo,

Graph-Centric
Giraph++,

Frontier-Based

Ligra,
Gemini,
Grunrock,

Optimized
Algorithms

And more...

Galois,



Vertex-Centric Programming Model

Popular model for efficient parallism and distribution

“Vertex program” only sees neighbors
Algorithm executed in terms of disjoint iterations

Vertex program is executed on one or more “Active Vertices”
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al o
2 4

Active Vertices



Algorithmic Representation of a
Vertex Program lteration
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Random read-modify update into vertex data



Random Access
Within an Active Vertex
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Random Access
Across Active Vertices

Vertex data must be stored in DRAM?

Data size and irregularity limit caching effectiveness



The Three Pillars of
Competitive Flash-Based Analytics

Capacity Algorithm Acceleration
“Sort-Reduce”



General Problem of

Irregular Array Updates

For eafysting o fiagay dn xs:
with axtrbajn—of (pHate|ragquests xs

and update function f
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Solution Part One - Sort

Sort xs according to index

SSrted xs

o > AR

Much better than naive random updates

2

L1 1>

Terabyte graphs can generate terabyte logs

Significant sorting overhead

Rgodotial
Updates



Solution Part Two - Reduce

Associative update function f can be interleaved with sort
e.g., (A+B)+C=A+(B+C)

merge

merge Reduced

Overhead




Removing Random Access
Using Sort-Reduce

for each vg,.. In ActivelList do
for each e(vg,., v45:) in G do
ev = edge_program (v,..val,e.weight)

Uist;.. gepe et

end for
end for

myevdex_update(pgs. next_val,

v = SortReduceyertex update(liSt)

No more random access!

Associativity requirement is not very restrictive
(CombBLAS, PowerGraph, Mosaic, ...)

ev)



Big Benefits from
Interleaving Reduction

Ratio of data copied at each sort phase
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The Three Pillars of
Competitive Flash-Based Analytics

Capacity Algorithm Acceleration



Accelerated Graph Analytics Architecture

In-storage accelerator reduces data movement and cost

Software Host (Server/PC/Laptop)
Yy ) | I
Accelerator-Aware s Multirate 16-to-1

Flash Management Merge-Sorter
FPGA L= _ _L A 1 L \
Multirate Wire-Speed A

Aggregator On-chip Sorter

SES— )

Pa rtiaI‘I'y Sort-
Flash Edge Vertex Reduced Files

Data Data

Active Vertices




Evaluated Graph Analytic Systems

In-memory Semi-External External
GraphLab (IN) FlashGraph (SE1) GraphChi (EX)
GraFBoost

“Distributed GraphLab: a framework for machine learning and data mining in the cloud,” VLDB 2012
“FlashGraph: Processing billion-node graphs on an array of commodity SSDs,” FAST 2015

“X-Stream: edge-centric graph processing using streaming partitions,” SOSP 2013

“GraphChi: Large-scale graph computation on just a PC,” USENIX 2012



Evaluation Environment

32-core Xeon
128 GB RAM
5x 0.5TB PCle Flash

$8000

All software
experiments

4-core i5
4 GB RAM

$400

+
Virtex 7 FPGA

1TB custom flash
1GB on-board RAM
$2090



Evaluation Result Overview

In-memory Semi-External External

GraFBoost

Large graphs:  Fail Fail Slow
Medium graphs:  Fail Fast Slow
Small graphs:  Fast Fast Slow

Fast
Fast

Fast

GraFBoost has very low resource requirements

Memory, CPU, Power



Results with a Large Graph:
Synthetic Scale 32 Kronecker Graph

0.5 TB in text, 4 Billion vertices
GraphlLab (/N) out of memory
FlashGraph (SE1) out of memory
GraphChi (EX) did not finish

1.7X

N

2.8x 10X

-

I GraFSoft

I
Bl L

Normalized
Performance
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B X-Stream (SE2) @ GraFBoost



Results with a Large Graph:
Web Data Commons Web Crawl

2 TB in text, 3 Billion vertices
GraphlLab (IN) out of memory

GraphChi (EX) did not finish

Only GraFBoost succeeds in both graphs

GraFSoft

1
) | ] X X

PR BFS BC
OSE1 BMSE2 B GraFBoost




Results with Smaller Graphs:
Breadth-First Search

Normalized Performance

0.03TB 0.09TB 0.3TB

0.04 Billion 0.3 Billion 1 Billion
5 Fastest!

< L Slowest Slowest Slowest
4 s U S
, - _
, __
1 I I— GraFSoft

twitter kron28 kron30
OIN OSE1 BSE2 EBEX B GraFBoost



Results with a Medium Graph:
Against an In-Memory Cluster

Synthesized Kronecker Scale 28
0.09 TB in text, 0.3 Billion vertices

.-. GraFSoft

PR
O5xIN OSE1 BSE2 BEX OGraFBoost

Normalized Performance
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GraFBoost Reduces
Resource Requirements

100 - 32 800 | 720
80 0
80 - 600
» 25 .
m 60 ] -g 20 B ﬁ
20 £15 2
-
20 | 10 - 200 -
5 |
0 - 0 - 0 -
O Conventional O Conventional O Conventional
B GraFBoost B GraFBoost B GraFBoost

External Analytics
External analytics Hardware Acceleration +
Hardware Acceleration



Evaluation Result Recap

In-memory Semi-External External GraFBoost
Large graphs:  Fail Fail Slow Fast
Medium graphs:  Fail Fast Slow Fast
Small graphs:  Fast Fast Slow Fast

GraFBoost has very low resource requirements
Memory, CPU, Power
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Key-Value Cache in the Data Center

User Requests

Application Server

Application Server

Application Server

-

T DKey-Value GET/SET Requests

KVS node

W >

Cache Layer

Backend Storage Layer

Transactional DB operations can become bottleneck

Key-Value caches like memcached cache DB query results

Facebook reported 300 TB of memcached capacity (2010)



Cached Application Performance Example

Using the BG social network benchmark”
MySQL backend and 16 GB memcached

Application Throughput

(@)
)
o

N
)
o

o

2 25 3 35 4 45 5 55
Number of Active Users (Millions)

1000 Requests\Second
S
o

*Open-source project by Twitter, Inc. 39



Software KV Caches Are Fast, but
Not Power-Efficient

Achieving high throughput requires a lot of resources

MICA Mega-KV
120 Million Requests Per Second 160 Million Requests Per Second
24 cores, 12 10GbE 2 GTX 780 GPUs
400 W 900 W

Superscalar OoO pipeline is underutilized for KVS

Only 3MB LLC is needed to sustain MICA’s throughput



The Three Pillars of
Competitive Flash-Based Analytics

Capacity Algorithm Acceleration



BlueCache: Flash-based KVS Architecture

e QSN e 00 DRAM
B N
App Server u Pedicated | . | E [ KX-In;lex
ey-value ! ache

App Server Storage )éata
A0 Sorver | Network Accelerators

i Engines y access KV-Data
App Server —:\ N e i Store

Store KV pairs in flash storage
Pipelined KV cache accelerators
Hardware accelerated dedicated storage network engines

Log-structured KV data store



Evaluation Setup

Frontend BG social network benchmark server
Backend MySQL server

32-core Xeon server

64 GB DRAM

1.5 TB PCle SSDs

KV Cache memcached FatCache* BlueCache
In-memory Flash-based Flash-based with acceleration
48 Cores 48 Cores 1 GB DRAM
16 GB DRAM 1 GB DRAM 0.5 TB PCle Flash

0.5 TB PCle Flash

"Open-source project by Twitter, Inc.



Performance Evaluation with More Users

Application Throughput
- 500
c
§ 400
2 300 (4.0M, 130KRPS)
@ 200
-
E 10 - !
S At much lower power! (40 W vs. 200 W
o / /
S . . . .
Number of Active Users (Millions)
—memcached FatCache —BlueCache
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Our Custom Flash Card for Distributed
Accelerated Flash Architectures

d Requirement 1: Modify flash management
d Requirement 2: Dedicated storage-area network
[ Requirement 3: In-storage hardware accelerator

Artix 7 FPGA
(Flash Controller)

0.5 TB Flash

FMC Connection
to FPGA board
(40 Gbps) ”:__i'lﬁ o g

Inter-Controller Network
(10Gbps/lane x4)

"minFlash: A Minimalistic Clustered Flash Array,” DATE 2016



BlueDBM Cluster Architecture

Ethernet |<—'

} 1TB

Host Server | | FPGA minFlash
(24-Core) (VC707) minFlash
——
~ 1GB RAM
Host Server FPGA minFlash
>
(24-Core) (VC707) T minFlash
I‘ |
. PCle FMC
- GenZx8 10Gbps network x8
Host Server FPGA minFlash
>
(24-Core) (VC707) minFlash

Uniform latency of 100 ps!



The BlueDBM Cluster

BIueDBM Storage Device




Our Research Enabled by BlueDBM

W oe

“Scalable Multi-Access Flash Store for Big Data Analytics,” FPGA 2012
“BlueDBM: An Appliance for Big Data Analytics,” ISCA 2015
“A Transport-Layer Network for Distributed FPGA Platforms,” FPL 2015

)

“Large-scale high-dimensional nearest neighbor search using Flash memory with in-store processing,’
ReConFig 2015

“minFlash: A Minimalistic Clustered Flash Array,” DATE 2016
“Application-managed flash,” FAST 2016

“In-Storage Embedded Accelerator for Sparse Pattern Processing,” HPEC 2016
“Terabyte Sort on FPGA-Accelerated Flash Storage,” FCCM 2017

Ol|® ¥ o U

11.

“BlueCache: A Scalable Distributed Flash-based Key-value Store,” VLDB 2017
“GraFBoost: Using accelerated flash storage for external graph analytics,” ISCA 2018

“NoHost: Software-defined Network-attached KV Drives,” (Under Review)




Future Work

Next generation of BlueDBM

Newer SSDs are much faster than 2.4 GB/s
Prototype flash chips are aging

More applications using sort-reduce

Bioinformatics collaboration with
Barcelona Supercomputering Center

More applications using accelerated flash

SQL acceleration collaboration with
Samsung

50



Thank you

Capacity Algorithm Acceleration



A Baseline Hardware Merge Sorter

> 5-to-1 ‘ .
. . ‘ Sorter ]

Sorter emits one item at every cycle

Easy to become bottleneck

52



High-Throughput Hardware Sorter using
Sorting Networks

Sorter emits sorted tuple at every cycle

Bitonic

sorter

. 4 >
>
LN
_—— = = —— -
>
>

—— Bitonic

Bitonic sorter
half-cleaner

A

28!

v/

Merge-Sorts at constant 4 GB/s

"Terabyte Sort on FPGA-Accelerated Flash Storage,” FCCM 2016



Hardware 16-to-1 Sorter
Reduces Sorting Passes

Constructed as a pipelined tree of 2-to-1 Sorters

» 2-to-1
* Sorter

{ 2-to-1 \I
2-to-1

" Sorter

— Sorter A
» 2-to-1 2-to-1
> Sorter —*| 2-to-1 Sorter

/ Sorter

» 2-to-1
* Sorter

"Terabyte Sort on FPGA-Accelerated Flash Storage,” FCCM 2016



Sort-Reduce Process

1TB Sort-Reduced  Sort-Reduced Sort-Reduced Fully
Update Stream <512MB Blocks < 8GBBlocks < 128GB Blocks Sort-Reduced

ol bl AL

In-memory
Sort-Reducers
(1 GB Memory)

16-way
Sort-Reducer




A Baseline Hardware Reducer

Vertex
Update

delay

/o

-~

Reducer consumes up to one item at every cycle

Vertex update latency impacts performance

56



Wire-Speed Reducer Using
Sorting Networks

.:| Single
Reducer _E
2-to-1 | Multi
Sorter Reducer
Single
Reducer

Single Reducers achieve single element wire-speed

Multi Reducer uses sorting networks to achieve multi-rate

Reduces at constant 4 GB/s

"Wire-Speed Accelerator for Aggregation Operations,” (Under Review)



