

Memory Class Storage

Bill Gervasi Principal Systems Architect bilge@Nantero.com

DDR5 Ends at 32Gb??? Really???

.....

.

Flash Memory Summit

But the DDR5 data sheet shows a 64Gb chip!

32 Gb Addressing Table							
Co	nfiguration	8 Gb x4	4 Gb x8	2 Gb x16			
	# of Bank Groups	8	8	4			
Bank Address	BG Address	BG0~BG2	BG0~BG2	BG0~BG1			
	Bank Address in a BG	BA0~BA1	BA0~BA1	BA0~BA1			
Ro	w Address	R0~R16	R0~R16	R0~R16			
Column Address		C0~C10	C0~C9	C0~C9			
Page size		1KB	1KB	2KB			

However, to get 64Gb, you have to give up 3DS...

64 GD A	4 GD Addressing Table									
Configuration		nfiguration	16 Gb x4	8 Gb x8	4 Gb x16					
		# of Bank Groups	8	8	4					
Bank A	ddress	BG Address	BG0~BG2	BG0~BG2	BG0~BG1					
		Deale Address in a DO	D10 D14	D40 D44	D40 D44					
	Ro	w Address	R0~R17	R0~R17	R0~R17					
Page size		Page size 1KB		1KB	2KB					

Eurotion	Abbrevia- tion	20	CA Pins														
Function		00	CA0	CA1	CA2	CA3	CA4	CA5	CA6	CA7	CA8	CA9	CA10	CA11	CA	12	CA13
Activate	ACT -	L	L	L	R0	R1	R2	R3	BA0	BA1	BG0	BG1	BG2	CID0	CI	-	DDPID
		Н	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R	5	CID3/ R17
Write	WR	L	н	L	н	н	L	BL*=L	BA0	BA1	BG0	BG1	BG2	CID0	CII	1	CID2/ DDPID
		Н	V	C3	C4	C5	C6	C7	C8	C9	C10	V	AP=L	WR_ Partial=L	\		CID3
Read	RD	L	н	L	н	н	н	BL*=L	BA0	BA1	BG0	BG1	BG2	CID0	CII	1	CID2/ DDPID
		Н	C2	C3	C4	C5	C6	C7	C8	C9	C10	V	AP=L	V	١		CID3

Santa Clara, CA August 2018 Changing "SCM" to "Persistent Memory" doesn't help... In fact, it may make it less clear...

Nantero NRAM[™]

Carbon nanotubes connected or split using electrostatic force

Stochastic array of tubes forms a resistive matrix

Stackable into a crosspoint memory array

Santa Clara, CA August 2018

Flash Memory Summit

For details, attend my talk at Hot Chips, September 2018

Unlimited Write Endurance

Santa Clara, CA August 2018 NRAM carbon nanotube bonds are atomic Once made, they stay connected until disrupted Insensitive to heat, radiation, etc.

> No CNT failure has been detected Unlimited write endurance expected

DDR4 NRAM

What can you do with a 10 ns core speed?

Not only perform as a DDR4 SDRAM

With non-volatility

And add the ECC on-the-fly function of DDR4E

Santa Clara, CA August 2018

1.

With inherent non-volatility, an RDIMM is an NVDIMM

No need for backup & restore procedure nor for battery backup

Flash Memory Sun	nmit	Mer	nory (ass S	Stora	ge vs	SCN	1		'ER(
		DRAM	NRAM		MRAM	ReRAM	PCM / 3DXpoint	FeRAM		Flash	
Non-volatility		No	Yes		Yes	Yes	Yes	Yes		Yes	
Endurance		10 ¹⁵	10 ¹⁵		10 ⁹	10 ⁶	10 ⁶	1014		10 ³	
Read Time		10 ns	10 ns		50 ns	200 ns	100 ns	50 ns		50M ns	
Write Time		10 ns	10 ns		1000 ns	1000 ns	1000 ns	50 ns		25M ns	
	M	Mem lemory Cla	ory & ass Storage	9	Storage Class Memory					Storage	
	aka "Persistent Memory"										

F			
	When DRAM	I Ends	
Flash Memory Summit			
DRA			
End of the line			
512Gb 3DS			
	DDR4→5 16Gb→32Gb		
3D	S 8H → 16H		
Santa Clara, CA August 2018			15

Flash Memory Summit	NANTERO t begins
DRAM	NRAM More layers CNT 512Gb
End of the line 32Gb mono 512Gb 3DS	Roadmap continues 512Gb mono 8Tb 3DS 256Gb
	New process DDR4 \rightarrow 5 3DS 8H \rightarrow 16H 16Gb 32Gb
Santa Clara, CA	

August 2018

Extended Addressing Protocol

64 Gb Addressing Table, Option 2								
	Configuration	16 Gb x4	8 Gb x8	4 Gb x16				
	Bank Group Address	BG0~BG2	BG0~BG2	BG0~BG1				
Bank Address	Bank Address in a BG	BA0~BA1	BA0~BA1	BA0~BA1				
	# BG / # Banks per BG / # Banks	8 / 4 / 32	8/4/32	4/4/16				
	Extended Row Address	R17	R17	R17				
	Row Address	R0~R16	R0~R16	R0~R16				
Column Address		C0~C10	C0~C9	C0~C9				
	Page Size	1 KB	1 KB	2 KB				
Chip ID	s / Maximum 3DS Stack Height	CID3~0 / 16H	CID3~0 / 16H	CID3~0 / 16H				

1 Tb Addressing Table							
	Configuration	256 Gb x4	128 Gb x8	64 Gb x16			
	Bank Group Address	BG0~BG2	BG0~BG2	BG0~BG1			
Bank Address	Bank Address in a BG	BA0~BA1	BA0~BA1				
	# BG / # Banks per BG / # Banks	8 / 4 / 32	8 / 4 / 32	4/4/16			
	Extended Row Address	R17~R21	R17~R21	R17~R21			
	Row Address	R0~R16	R0~R16	R0~R16			
	Column Address	C0~C10	C0~C9	C0~C9			
	Page Size	1 KB	1 KB	2 KB			
Chip ID:	s / Maximum 3DS Stack Height	CID3~0 / 16H	CID3~0 / 16H	CID3~0 / 16H			

Extends addressing to 4Tb (512 GB) per die or 64Tb (8 TB) per 3DS stack

Conterve Sentero The Post-DRAG as Insuitable Deep Cearning Deter Data Mining Artificial Intelligence In-memory Computing

Memory demand is only headed north What are you going to do after 32Gb?

DRAM is going away after 32Gb "Storage Class Memory" fills a gap between DRAM and Flash NVDIMM-P protocol allows SCM to share a DRAM channel NRAM defines a new "Memory Class Storage" category MCS = Unlimited write endurance and full DRAM speed NRAM process roadmap extends beyond DRAM by > 16X

Bill Gervasi Principal Systems Architect bilge@Nantero.com