

NEUROMORPHIC ARCHITECTURES & OPPORTUNITIES FOR NVM TECHNOLOGIES

Etienne Nowak, Head of Non Volatile Memory Laboratory - CEA-Leti Flash Memory Summit 2018 BOOTH #852 Aug. 9th, 2018

Neural Networks :

A huge amount of Applications recently emerged

- Image Recognition
 - Web (Google, Facebook, ...)
 - Autonomous Vehicles (Google, Uber, ...)
 - SmartPhones (Qualcomm)
 - Medical application
- Robotics, drones
 - Movidius, Aldebaran...
- Temporal Sequences Recognition
 - Voice (Google voice + G. assistant, Apple Siri, Microsoft Cortana, Amazon Alexa, Samsung Viv)
- Security/Monitoring
 - Industrial Process (GST, General Vision)
 - Video Camera Networks
- Data mining
 - Smart City (IBM Watson, Schneider Electric)
- Healthcare and Medecine
 - Deep Mind, Nvidia Horus ...

\rightarrow The next general purpose computing ?

• From neurons to Deep Neural Networks (NN) and Deep Learning

- Scaled-up NN contains millions of neurons and billions of synapses
- Trained with huge datasets (up to millions of images) with gradient descent technics
- Recurrent NN (RNN) are effective for sequences recognition (speech)
- Convolutional NN (CNN) use trainable convolution filters for image recognition

• Current implementations need:

- Large computational power to define network
- Large labelled data sets for training
- Access to the large computing system at moment of use

ightarrow Very high energy consumption due to data movement

 \rightarrow Architecture not adapted to distributed or low power embedded data processing

Brain VS. Computer : x 10⁶ power discrepancy

The Exascale Power Conundrum: Why We Have to Turn to Brain-Inspired Computers

- Straightforward Extrapolation Results in a Real Time Human Brain Scale ٠ Simulation at 1–10 Exaflop/s with 4 PB of Memory
- A Digital Computer with this Performance Might be Available in 2022–2024 with a Power Consumption of >20–30 MW
- The Human Brain Runs on 20 W ٠
- Our Brain is a Million Times More Power Efficient! •

Horst Simon, Deputy Director, Lawrence Berkeley National Laboratory

- Low-speed components (~1 100 Hz)
- >10¹⁶ complex operations / second (10 Petaflops!!!)
 - 10-15 watts!!!
 - 1.5 kg

K comp (RIKEN, Japan 8.162 petaflop 9.89 MW

PROVIDE A LONG ROADMAP FOR COMPUTING EFFICIENCY

- Basic brain elements have the similar performance than today CMOS and NVM architecture
- Biological system computation are 3 to 6 order more energy efficient than current dedicated silicon system

NEURON : A UNIVERSAL NON VOLATILE MEMORY BUILDING BLOCK THAT IS NOT SO SMALL AND ENERGY EFFICIENT

- 1 spike ~ 120pJ
- 1 neuron ~ 20x20x20um³
- 10⁴ memory elements per neuron

Current NVM has better efficiency

NAND Flash has as smaller size

- Opportunity : System are highly scalable and « general purpose »
 - Mouse brain : 10⁷ Neurons, 10¹¹ Synapses (=memory element)
 - Cat brain :10⁹ Neuron , 10¹³ Synapses (= memory element)
 - Human brain : 10¹¹ Neuron , 10¹⁵ Synapses (= memory element)

HOW BIOLOGICAL SYSTEMS CAN INSPIRE US MORE?

- Network
 - Set of neurones
 - Interconnected through synapses
 - 3D connected
- Neurone
 - Compute elements
 → Integration of inputs
 - 1k 10k inputs
 - 1 output only but with very high Fan-out
- Synapse
 - Memory element
 - \rightarrow Modulation of inputs
 - Define the function of the network

\rightarrow Low frequency (1-10 kHz) usage but huge connectivity

ightarrow Require NVM elements to enable computation

BIOLOGICAL INSPIRED NEURONES USING OXRAM

- Classification of handwritten
 numbers
- Small resolution image
 - 12*12 pixels
- Fully-connected network
 - 10 neurones : 1 neurone / class
 - 144 synapses

- 130nm CMOS + ReRAM,
- Clock frequency: 50 MHz
- 10 neurones
- 10*144 synapses = 11,5 kOxRAMs

Fabricated circuit /under test

ightarrow Capability to design functional circuit based on ReRAM and Spike-driven

MEMORY ADVANCED DEMONSTRATOR (MAD) FOR DESIGN AND TECHNOLOGY EXPLORATION

- → Open to all designers in 200mm of HfO2 based ReRAM <u>https://mycmp.fr</u>
- \rightarrow Contact Leti if needs alternative ReRAM flavor or want to provide yours
- → New in 2019 : 300mm integration for access to more efficient CMOS

WANT TO BE PREPARE FOR THE NEXT REVOLUTION IN COMPUTING EFFICIENCY ? BOOTH #852

leti

ceatech

