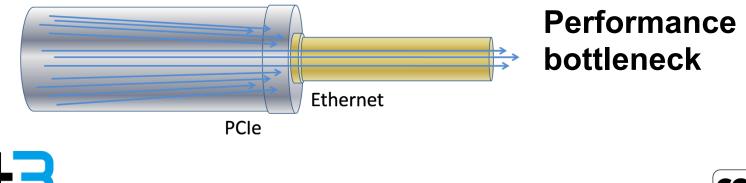
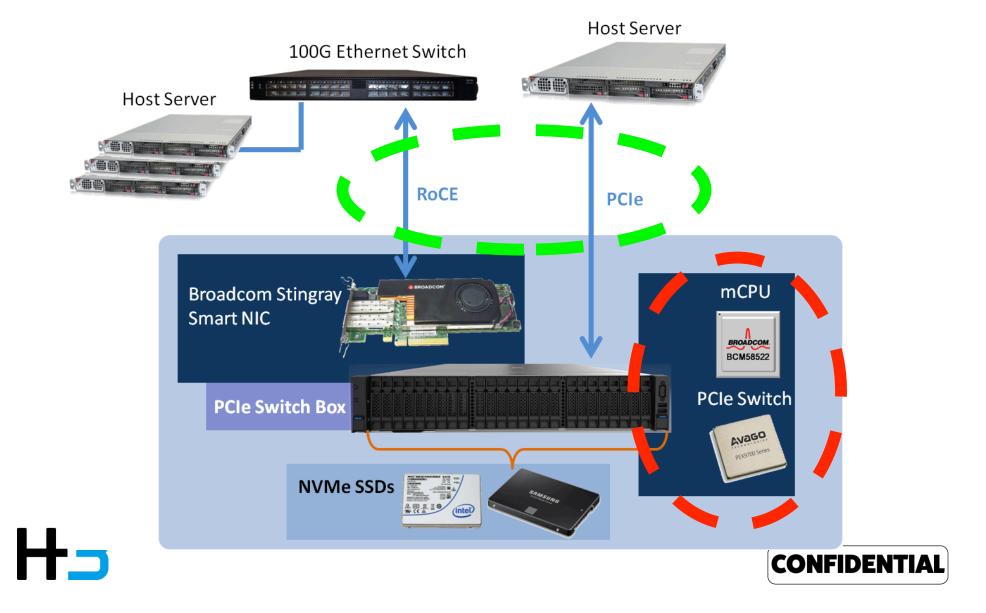

NVMe Over Fabric and Direct Attached Host with NVMe SSD SR-IOV

Brian Pan Aug 2018



Complexity and Bottleneck



Power sequence, bus number, memory address, hotplug, OS and driver

System Architecture-- Direct PCIe and NVMe-oF

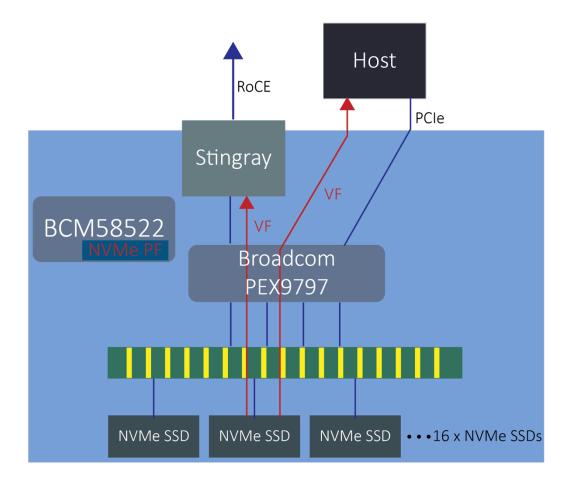
System Specification

- Host connection
 - 2x 100G Smart NIC for NVMe over fabric
 - 2x PCIe Gen3 x16 for host connection
- NVMe SSD
 - 16x U.2 NVMe SSD (PCIe Gen3 x4)
- System specification
 - 2U form factor
 - 1+1 redundant 1400W
 - 4+1 redundant fan

NVMe SSD Pooling by PCIe Switch

Spec	Details	SMART NIC– Stingray ARM SoC with 100G smart NIC for ROCEv2
Dimension	2U	NVMe SSD device allocation
Front Port	16 U.2 NVMe SSD	 Dynamically assign VF of NVMe SSD to smart NIC
Back Port	Stingray, management, power	 Hot-plug NVMe SSD Remove/ add/ re-allocate VF of NVMe SSD from one NIC to another NIC without system
Power	1400W, 1+1 Redundant	from one NIC to another NIC without system shutdown
L	· · · · · · · · · · · · · · · · · · ·	Host-device port configuration

Management API
Follow the redfish standard and integrate with Intel RSD management software

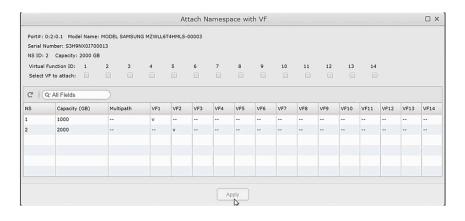

• Assign the PCIe slot as PCIe host connection

or device ports dynamically (restart required)

NVMe-oF System Architecture

System

- 1x 25G Smart NIC
- 16x NVMe SSD with SR-IOV capability
- 1x 96 Lane PCIe switch
- PF of all NVMe SSD are installed in PCIe mCPU
- Each PF is with 5 VF. 5 VF are assigned to Smart NIC and host.



Demo of NVMe SR-IOV

1. Create Namespace in NVMe

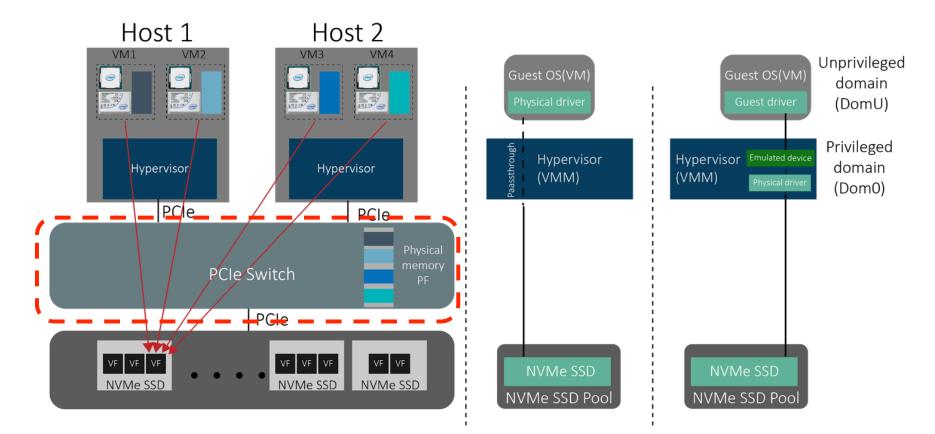
Serial Number: S3H9NX0J	B Available Capacity: 4944 GB	
Namespace	Capacity (GB)	Multipath
1	1000	•
	Create Delete	

2. Map NS with VF

3. Assign VF to Smart NIC/ host

Serial Number: S3H9NX037 Host Port : 0:14:0 (Link, 1				
C' III Q: All Fields				
VF ID	Total Number of Attached NS	Allocated Host Port		
1	1	0:13:0		
2	1	0:14:0		
3	0			
4	0			
5	0			
6	0			
7	0			
8	0			
9	0			
10	0			
11	0			
12	0			
13	0			
14		Allocate another VF to port14.		
	Port14 is NIVM	Port14 is NVMe over Fabric by Smart NIC.		

4. Run FIO test


FIO Test Result of Direct Attach vs Smart NIC

Performance	Throughput	Latency
Directly attach to host	2853.5 MB/s	345.03 usec
NVMe over Fabric	2588.9 MB/s	380.49 usec

NVMe with or without SR-IOV Capability

NVMe with SR-IOV. VM talk to VF directly. PF is sit on PCIe switch.

NVMe without SR-IOV. Passthrough model NVMe without SR-IOV. Hypervisor manage VMs to NVMe SSD

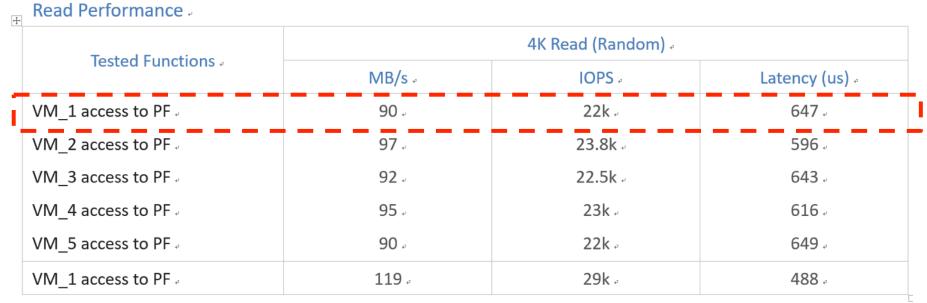
Performance Results of NVMe with SR-IOV

NVMe Virtual Functions on Linux KVM (Passthrough)

Read Performance

Tested Functions	4K Read (Random)				
Tested Functions -	MB/s .	IOPS 🖉	Latency (us) .	÷	
VM_1 access to VF_1	280 .	68.5k	202 .		
VM_2 access to VF_2	280 .	68.4k	202 .		
VM_3 access to VF_3	277 .	67.5k	206 .		
VM_4 access to VF_4	283 .	69.0kk	200 .		
VM_5 access to VF_5	281 .	68.5k	202 .		
VM_1 access to VF_1	310 .	75.6k -	180 .		

The performance measured using Fig. in CentOS 7.5, with queue depth 16 by 1 worker.


VM_1 access to PF	90 -	22k -	647 .
-------------------	------	-------	-------

Performance Results of NVMe without SR-IOV

NVMe Physical Function on Linux KVM (Shareable)

The performance measured using Fig. in CentOS 7.5, with queue depth 16 by 1 worker.

Key Benefits of NVMe SR-IOV

- Performance
 - The VF latency is only ¹/₃ of PF latency in multi-VMs environment
 - The performance is 3 times of PF performance
 - PCIe Gen3 x4 performance can be shared by multi-VMs
- Cost saving
 - Tens of VFs associated with a single PF, extending the capacity of a device and lowering hardware cost
 - With better latency and performance, the utilization rate will be higher to further reduce the hardware cost
 - Reduce NVMe SSD amount by sharing NVMe via PCIe

Key Benefits of NVMe SR-IOV

- Multi-path IO via PCIe
 - The name space on NVMe can be accessed by different hosts through PCIe connection
- Flexibility configuration
 - Dynamic control by the PF through registers designed to turn on the SR-IOV capability, eliminating the need via direct access to hardware from the virtual machine environment.
- Inter-operatability
 - A standard way of sharing the capacity of any given I/O device thus allowing for the most efficient use of that resource in a virtual system

- S huaiyangpan
- www.h3platform.com
- brian.pan@h3platform.com

+886 2 2698 3800#110

