
Optimizing NVMe-over-Fabrics using
NVMe CMBs and Accelerators

Andrew Maier, Software Engineer, Eideticom
Dr. Stephen Bates, CTO, Eideticom

Santa Clara, CA
August 2018

1

Outline

Santa Clara, CA
August 2018

2

1.  Introduction to NVMe Acceleration and NoLoad™
2.  Integration of Accelerators into NVMe over Fabrics

(NVMe-oF)
3.  Acceleration via NVMe-oF Example
4.  NVMe-oF Target/Server CPU Offloading
5.  Peer-to-Peer Transfers using NVMe-oF Offload

NoLoad™
•  Eideticom’s NoLoad™ leverages the NVMe standard to present FPGA

Accelerators as NVMe namespaces

Santa Clara, CA
August 2018

3

NoLoad Bitfiles

U.2 FPGA Card COTS PCIe FPGA Card Cloud Servers i.e.
Amazon F1

Introduction to NVMe Acceleration

•  Why NVMe?
•  NVMe is a low latency, high

throughput, low CPU overhead
transfer protocol

•  Usage of built-in and industry-
standard drivers and tools

•  Why build and maintain a
proprietary driver?

•  Ability to use the emerging
NVMe over Fabrics ecosystem
for storage (and accelerator)
disaggregation

Santa Clara, CA
August 2018

4

DRAM		 CPU

PCIe	

NoLoad	

Acc	
Card

NVMe

SSD

NVMe

SSD

NIC	
(RDMA	
and/or	
TCP/
IP)

NVMe-oF

•  NVMe over Fabrics
(NVMe-oF) allows
namespaces to be shared
across existing networks

•  Using built-in drivers, we
expose the NVMe
namespaces to client
machines

•  Since NoLoad is a
standard namespace. It
can shared in the same
way!

•  So how does it work?

Santa Clara, CA
August 2018

5

RDMA or
TCP/IP
Network

Clients Servers NVMe
SSDs

NoLoad ™ U.2

NVMe-oF

•  Clients request to borrow
a namespace(s) (or
accelerators) from the
server.

•  Client is given access to
the namespace over the
connection.

Santa Clara, CA
August 2018

6

RDMA or
TCP/IP
Network

Clients Servers NVMe
SSDs

NoLoad ™ U.2

NVMe-oF

Santa Clara, CA
August 2018

7

•  Clients then see the newly acquired namespaces as local NVMe block devices
•  Normal NVMe operations can then be executed as if it were locally in the client machine
•  With the latest (soon to be upstreamed) NVMe over Fabrics passthru patches from

Chaitanya Kulkarni, the client has access to all vendor specific functionality as well.

Case Study: Compression over
Fabrics

•  Implemented compression core FPGA accelerator
•  Each compression core capable of >1GB/s

throughput
•  Multiple accelerator cores can be integrated into a

NoLoad FPGA
•  Each accelerator core is its own NVMe namespace

•  Both NoLoad and a generic NVMe SSD located on remote
U.2 JBOF

•  Both are shared via NVMe-oF

•  Client process generates data, sends it to the compression
accelerator, and then outputs it to the SSD.

Santa Clara, CA
August 2018

8

NIC

Local	Client	running	
application	

Stingray™

NoLoad	™	
U.2	

High-speed	Network

Generic	
NVMe	SSD	

U.2	

X86	Client	(Dionysus)	

Stingray	™	Server	

Case Study: Compression over
Fabrics

Santa Clara, CA
August 2018

9

•  The 2x compression core test over fabrics achieves about 1 GB/s per core
•  This means we are still able to get the same throughput over fabrics! (Given sufficient fabrics bandwidth of course)

•  But how much impact is there on resources in the target machine?

Target CPU Efficiency

•  Let’s look at a different
example but with the
Mellanox ConnectX-5’s

•  In vanilla NVMe-oF target
CPU is responsible for
handling communication with
NVMe drive

•  This data flow heavily uses
the target CPU and DRAM

•  How can we reduce the load
on the target machine?

•  NVMe-oF offload!

Santa Clara, CA
August 2018

10

Intel CPU
Skylake

D
R

A
M

Microsemi
PCIe
Switch

Celestica
Nebula
JBOF

Seagate
NVMe SSD

Seagate
NVMe SSD

Seagate
NVMe SSD

Mellanox
NIC

E
ideticom

N

oLoad

PCIe x4

PCIe x4

PCIe x4

PCIe x16

PCIe x16

PCIe x16
100 Gb/s
Ethernet

PCIe x16

DDR

NVMe-oF target configuration

NVMe-oF Offload

•  NVMe-oF Offload allows the NIC to directly control NVMe devices
•  Using Mellanox ConnectX-5’s we can offload the NVMe work from the target

CPU

Santa Clara, CA
August 2018

11

Operation Latency
(read/write)
us

CPU Utilization CPU Memory
Bandwidth

CPU PCIe
Bandwidth

NVMe
Bandwidth

Ethernet
Bandwidth

Vanilla NVMe-oF 188/227 1.00 1.00 1.00 1.00 1.00

ConnectX-5 Offload 128/138 0.02 2.40 1.03 1.00 1.00

•  ConnectX-5 Offload reduces the target CPU load by x50 but doesn’t decrease
the memory bandwidth

•  How can we reduce the memory utilization?
•  With peer-to-peer transfers!

NVMe CMBs and P2P Transfers

•  For p2p transfers, we need to make
use of NVMe CMBs (Controller
Memory Buffers)

•  A NVMe CMB is a PCIe BAR (or part
thereof) that can be used for certain
NVMe specific data types.

•  A P2P framework called p2pmem is
being proposed for the Linux kernel

•  PCIe drivers can register memory (e.g.
CMBs) or request access to memory
for DMA

•  With P2P transfers, we can skip the
DRAM copy reducing latency and
DRAM usage.

Santa Clara, CA
August 2018

12

CPU

D
R

A
M

N
IC

N
V

M
e

P
C

Ie

P
C

Ie

DDR

Traditional DMAs

CPU

D
R

A
M

N
IC

N
V

M
e

P
C

Ie

P
C

Ie

DDR

P2P DMAs

•  Traditional DMAs (left) load the CPU.
P2P DMAs (right) do not load the CPU

C
M

B

NVMe-oF Offload with P2P and CMB

•  Now let’s retry the
previous example
with P2P/CMB with
the ConnectX-5
Offload

•  The P2P path
offloads both the
CPU and the DRAM

Santa Clara, CA
August 2018

13

Intel CPU
Skylake

D
R

A
M

Microsemi
PCIe
Switch

Celestica
Nebula
JBOF

Seagate
NVMe SSD

Seagate
NVMe SSD

Seagate
NVMe SSD

Mellanox
NIC

E
ideticom

N

oLoad

PCIe x4

PCIe x4

PCIe x4

PCIe x16

PCIe x16

PCIe x16
100 Gb/s
Ethernet

PCIe x16

DDR

NVMe-oF target configuration

Legacy Data Path

P2P Data Path

NVMe-oF Offload with P2P and CMB

Santa Clara, CA
August 2018

14

Operation Latency
(read/write)
us

CPU
Utilization

CPU Memory
Bandwidth

CPU PCIe
Bandwidth

NVMe
Bandwidth

Ethernet
Bandwidth

Vanilla NVMe-oF 188/227 1.00 1.00 1.00 1.00 1.00

ConnectX-5 Offload 128/138 0.02 2.40 1.03 1.00 1.00

Eideticom NoLoad
p2pmem

167/212 0.55 0.09 0.01 1.00 1.00

CX5 Offload +
Eideticom NoLoad
p2pmem

142/154 0.02 0.02 0.04 1.00 1.00

•  Combining p2pmem and CX5 Offload provides significant
reduction of CPU utilization (x50), CPU memory
bandwidth (x50), and CPU PCIe bandwidth (x25)

FMS 2018 Eideticom Demos

•  The discussed compression example NVMe-
oF with Broadcom at booth #729

•  Compression/Decompression acceleration via
P2P transfers with Xilinx at booth #313

•  Come check them out ;)

Santa Clara, CA
August 2018

15

