
Achieving High Performance and Low Latency with
NVMe/TCP

Sagi Grimberg
Co-Founder & Chief SW Architect

Lightbits Labs Proprietary and Confidential | 2

Agenda

• Motivation for NVMe/TCP

• Short architectural overview

• NVMe/TCP in Linux

• Some performance measurements

• Talk about common storage services with NVMe-oF

Motivation

Lightbits Labs Proprietary and Confidential | 4

From direct-attached to a disaggregated cloud

• Maximize utilization
• Reduce TCO
• Easy to maintain,

operate and scale
• Better user experience
• Support more users

Lightbits Labs Proprietary and Confidential | 5

Why NVMe/TCP ?

● Ubiquitous - No networking infrastructure requirements/constraints

● TCP is probably the most well-known and well-understood transport

● TCP is actively developed and maintained by the biggest players

● Delivers high performance and low latency

● Well suited for large scale deployments and longer distances

NVMe/TCP Overview

Lightbits Labs Proprietary and Confidential | 7

NVMe/TCP in a nutshell

● NVMe-oF Capsules and Data are
encapsulated in NVMe/TCP PDUs

● PDUs have variable length

● PDUs contain optional Header and
Data Digest protection

● PDUs contain optional PAD used for
alignment enhancements

Lightbits Labs Proprietary and Confidential | 8

NVMe/TCP in a nutshell

● Host to Controller data direction can come either in-capsule or out of
capsule

NVMe/TCP in Linux

Lightbits Labs Proprietary and Confidential | 10

NVMe/TCP drivers

● Plugged into the stack as another fabrics transport in the NVMe subsystem
● Focused on simplicity and efficiency
● Aggressive code reuse and commonization (where makes sense)
● Not “reinventing the wheel” using common interfaces

Lightbits Labs Proprietary and Confidential | 11

LOC count

● Linux NVMe subsystem is in pretty good shape where most of the code is
common
○ We still have plenty of room for improvement...

Lightbits Labs Proprietary and Confidential | 12

Drivers Design Guidelines

● Single reactor thread per-cpu
○ Each CPU core handles predefined number of NVMe queues

● NEVER block on I/O

● Aggressively avoid any data copy

● RX is handled in Soft-IRQ in order to complete as fast as possible
○ Called directly from NAPI

● Minimal set of atomic operations in the submission/completion paths

● Fairness and budgeting mechanisms multiplexing between NVMe queues

Lightbits Labs Proprietary and Confidential | 13

Features

● Zero-Copy Transmission

● Header and Data Digest

● CPU/NUMA affinity assignment for I/O threads (target side)

● TLS Support - Ongoing

● Polling mode I/O - Ongoing

● Automatic aRFS support - Future

● Out-Of-Order Data Transfers - Future

Some Performance Measurements

Canonical Latency Difference vs. DAS

15

● Random Read
● 4KiB Block Size
● QD=1
● Null Backend device

While Latency is Slightly higher than
RDMA, it is still very good

Thread Scaling

16

● Emulate multithreaded applications
that issue blocking I/O (QD=1)

● NVMe/TCP performance scales with
thread count and latency is not
impacted

But what about common services?

Performance with RAID and Thin Provisioning

18

● Test is using 8 NVMe backend drives at 8k random 70/30 mixed workload

● Performance falls to the floor once features kink in..

Notice the logarithmic scale

Visit Lightbits Demo

19

