

MRAM: Memory for the Edge... And Beyond

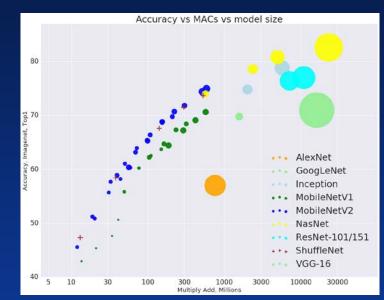
Jeff Lewis SVP Business Development

Santa Clara, CA August 2018

Intelligence Is Moving to the Edge

Edge AI Required When:

Latency Unacceptable Communication Power Privacy Concerns Localized Training


ADAS, Robotics, Security, Industrial Process Local Processing more efficient than transmission GDPR, HIPAA, Surveillance Local surveillance, Google Federated Model, other

emerging NN architectures

Devices must get more sophisticated to prevent Fraud, Hacking, Mischief - Next step is Personalization -- Voice → MY Voice

Edge AI: Smarter = Power Hungry

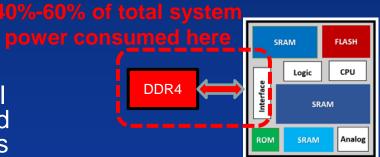
- Complex local computation
 - E.g., Facial recognition, ADAS, Surveillance
- SRAM size/power grows as computation grows
 - Or add external DRAM...
- Power consumption huge challenge
 - Limits model sophistication
 - Large battery
 - Heat effects wearables, cameras

Accuracy of ImageNet classification versus neural net complexity – showing reducing complexity (and power) by 10x reduces accuracy by 15-20% (source Google MobileNet V2)

Thanks for the Memories

- Edge AI Is All About (RAM) Memory
- "Never Enough Memory"...
 - Most AI Chip Energy and Die Area consumed by Memory
 - Han, ISCA 2016, many others
- ... And it better be On-chip
 - Google study*: 40%-60% of total mobile system energy consumed in DRAM ← → Chip data transfers

"Memory is one of the biggest challenges in deep neural networks (DNNs) today." -- GRAPHCORE


HOW TO SOLVE THE MEMORY CHALLENGES OF DEEP NEURAL NETWORKS

Memory Holds the Key to Artificial Intelligence

_avering Intel[®] Optane™ between SSD and RAM keeps more data closer to memory, making it readily available for AI initiatives.

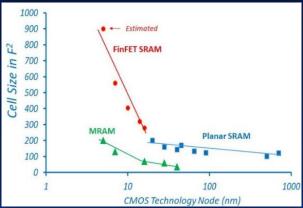
🏠 by Karen Krivaa 肖相译 · May. 25, 18 · Al Zone · Opinion

*Boroumond, Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks, © 2018

App-Targeted MRAM for SoC's

10-15ns R/W **SRAM Replacement** $>10^{13}$ cycles SRAM LLC, AI, DDI, many others Days-months retention High Speed & 25-50ns R/W Endurance NVM >10¹¹ cycles NVM IoT, Edge AI >10 years retention Foundry NVM MTJ Foundry SRAM MTJ 25ns Rd / 50-500ns Wrt eNVM 10⁶⁻⁸ cycles NVM eFlash replacement >10 years retention Retention 10+ years

Endurance


∞ŏ

Speed

MRAM Replaces SRAM

* R. de Werdt et al., IEDM 1987; R.D.J. Verhaar et al., IEDM 1990; S.H. Kang et al., IEDM17

MEMORY

SIZE: 1T-bitcell – MRAM block 70%-80% smaller than SRAM

✓ LEAKAGE: No bitcell leakage

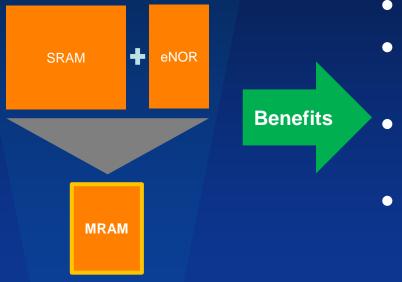
✓ **BEOL:** Simple Integration

✓ NO S.E.U.: Rad hard bitcells

✓ **PERSISTENT**: Data retained

MRAM Materially Improves Edge AI

Challenge


MRAM Solution

Lots of On-Chip RAM	MRAM ¼ Size of SRAM → 4x More Memory in Same Footprint
Lowest Possible Cost	Size vs. SRAM Low-cost BEOL Adder vs. Flash Execute-in-Place Merged NVM + RAM
Lowest Possible Power	MRAM Low Write Energy MRAM Persistence – No Leakage vs. SRAM Easy + Efficient Sleep Management
Many Updates	MRAM 100x – 10,000x Lower Write Power than Flash, and Much Higher Endurance

MRAM Unified Execute-In-Place Memory

Merge SRAM + Flash

- ↓**Cost**: Much smaller die area
- ↓Cost: MRAM wafer cost
 lower than flash wafer cost
 - ↓Power: Eliminates memory data transfer latency + power

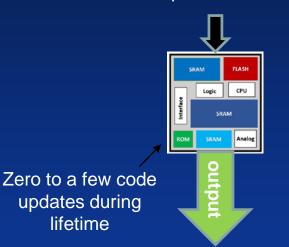
Lifetime: Enables frequent data updates, data logging, other write-intensive NVM

Merged NVM + SRAM for up to ~40MHz Operation

MRAM Maximizes Sleep Cycles More Sleep = Longer Battery Life

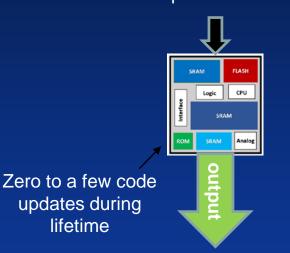
- Going in / out of sleep burns energy
 - Mostly storing / reloading SRAM
- Only sleep when: *EnergySavings*_{Sleep} > EnergyCost_{LoadStore} → Limits sleep to few, long periods

Using MRAM instead of SRAM:

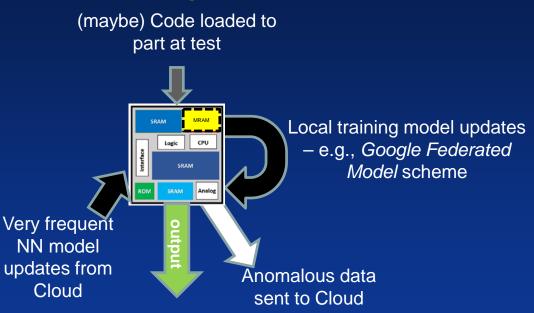

- Simply power memory off!
- Eliminates store/reload energy cost
- Enables frequent "Micro-Naps"
 - save significant additional energy

Normal Processing Device

Code loaded to part at test



Flash write power + performance: No Problem


Normal Processing Device

Code loaded to part at test

Flash write power + performance: No Problem

"Smart" Edge Device

Flash write power + performance: BIG Problem – MRAM 100-1,000X Better

 Transformative memory → Enables applications other memories can't

• Will be as significant as SRAM and other memories

Will finally be able to answer the question: – Is this a Rabbit... or a Duck?