

MRAM Applications – Pros/Cons

- Panel Discussion
- Goal: Discuss upcoming MRAM Applications in Two Axes: Market and Performance
- Panelists:
 - Mark Webb, President MKW Ventures
 - Daniel Worlege, Distinguished RSM, IBM Research
 - Terry Torng, Co-Founder, GyrFalcon
 - Tetsuo Endoh, Prof. Tohoku Univ
 - Tom Andre, VP Engineering, Everspin
 - Jean-Pierre Nozieres, CEO, Antaios
- Two Domains:
 - Market segments NVM / Unified / SRAM / AI / Auto, etc
 - Performance axis Retention / Endurance / Cost / Scalability

• What is the main Market for MRAM in 2024?

• What are the Pros/Cons in Performance?

Chair: Satoru Araki

Market Segment

Panelist Views 2019

		Mark	Daniel	Terry	Endoh	Tom	Jean-Pierre
Market	Target Market	 Embedded, SOC, NOR/SRAM replacement 	 eNVM @ 105C eNVM @ 125C, solder reflow Mobile cache (10 ns) Last level cache 	Edge AI and IoT, AI for Robot and AI for automotive	 e-Memory (SRAM & e-Flash replacement) NV-Logic for IoT, Mobile, Car Electronics, Robot, Al 	 Entry: Storage (SSD) Next: Industrial, Auto, Aerospace 	 Immediate: IoT (battery-operated, ex. Data logging) Near :Automotive / Al
Performance	Pros	 Ability to support DRAM, NOR, SRAM applications storage in metal layers 	 eNVM @ 125C with solder reflow is doable now Mobile cache at 10 ns is doable now 	 Non volatile , no leakage Memory density Scalability Potential universal memory 	<sram replacement=""> • Low Power • Small Cell Size <e-flash replacemt=""> • Low Power • Small Cell Size • Better Endurance • High Speed Write</e-flash></sram>	 High bandwidth non- volatile writes High Endurance Reliability ST-DDR4 Interface 	 Fast and non volatile Huge power savings at chip level
	Cons	 Maturity in embedded applications Cost/Scaling 	 Last level cache is very hard –reliable 2 ns write with low current MRAM will never be SCM – no multi-bits 	 SRAM like ns Read/write speed for some application SRAM like endurance or better for some application 	<sram replacement=""> • Endurance • Write Power • Cost <e-flash replacemt=""> • Retention @HT • Cost</e-flash></sram>	 Density < DRAM Ind/Auto grades not yet avail Clock Freq < DRAM 	 Endurance-speed- retention trilemma Heavy ECC required Limited read speed STT is not RAM compatible as is
Action Needed		 Demonstrated volume in production Achieve Cell size <20 F² 	 Develop new materials/device for reliable 2 ns write with low current 	 SRAM like performance MLC MRAM Next-gen MRAM, SOT, VCMA 	 Adv.Process Tech, High throughput ECC Tech Testing Tech 	•MTJ Scaling and Design to extend temp and improve power/perf/area	 Achieve speed AND endurance at the same time – SOT ! Improve read margin to raise read speed

2019 MRAM Markets and Applications

Mark Webb

MKW Ventures Consulting, LLC 8/5/2019

MRAM Future and Challenges

- MRAM technology is here today
 - We know what it is and what the challenges are
 - Cost, Performance, Density, Endurance, SOC integration, etc
- In past year, we have updates on multiple fronts
 - Existing companies announced 1Gbit parts, updated us on revenue and growth
 - Multiple Companies presented embedded MRAM technologies
 - IEDM/ISSCC Papers were popular. Embedded is an option to choose
 - New technologies and models and optimization
- No need to speculate on what is coming

- Embedded: MRAM is ideal for market (revenue not measurable)
 - Potential to replace NOR, SRAM, DRAM applications
 - Ability to integrate (metal stacks), density (Mbit), performance (DRAM) match
 embedded needs well
 - Endurance work needed for full RAM replacement
 - Looks like Embedded "Universal Memory"... Why isn't it here already?
- Discrete: Targets and Market growth uncertain (Rev <\$100M today)
 - Target applications requires specific density, speed, with NVM requirement.
 - Small markets exist, but they are vulnerable to attack on all sides.
 - No measurable NAND replacement market (Too small, expensive)
 - Performance/cost/density ratio not on track to match DRAM
 - Needs to dominate Niche or have "Killer App"

Revenue Projections for MRAM

- In 2018 we predicted >\$900M in Revenue by 2024
 - This will not happen
 - 2018/2019 did not breakout like we hoped/expected

	MRAM Revenue Baseline	Notes/required milestone
2020	\$115M	1Gb selling for revenue in 2020, DRAM-Like performance. Multiple IP sources for foundries
2022	\$217M	Multiple foundries and 1+ Memory company in volume
2024	\$429M	2+ memory companies in volume

Included discrete chips (may be stacked) and revenue from licensing Does not include embedded memory (no revenue model)

What is Needed to meet Revenue by 2024 (Forecast=\$429M)

- <u>ALL MRAM</u>: Volume production in applications in 2020
 - These are required to allow people to commit the technology to <u>significant</u> products.
- <u>Embedded:</u> Multiple foundry support with multiple applications
 - MRAM penetration into market is measureable in 2020
 - MRAM becoming chosen technology in 2022 designs
- <u>Discrete</u>: Meet aggressive endurance goals, Cell size Goals, Density roadmaps and Cost
 - To have any penetration into larger markets, confidence needs to increase in delivering specs.
 - MRAM is unique enough to not allow easy "backup plans", so high confidence is needed

- More details on MRAM vs other memories in my memory update on Tuesday
- Mark Webb, www.mkwventures.com

MRAM Developer Day Panel Discussion

Daniel Worledge IBM Research

Senior Manager, MRAM

Daniel Worledge

8/5/19

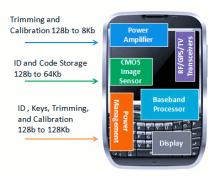
Key Advances in Spin-Transfer-Torque MRAM

Device		Write	Read	Scaling	
1974 Slonczewski (IBM) invents magnetic tunnel junction.	1995 Moodera (MIT) and Miyazaki (Tohoku U.) demonstrate first room temperature magnetic tunnel junctions.	1996 Slonczewski (IBM) invents spin-transfer- torque switching. I < I c	2004 Parkin (IBM) and Yuasa (AIST) publish discovery of high magneto- resistance in MgO tunnel junctions.	2010 Worledge (IBM) and Ohno (Tohoku U.) demonstrate first perpendicular CoFeB tunnel junctions.	
LOW RESISTANCE	HIGH RESISTANCE				
Magnetic T	unnel Junction	Spin Transfer Torque	MgO Tunnel Barriers	Perpendicular Magnetization	

MRAM Applications

<u>Standalone</u>

- Replace battery-backed
 SRAM or DRAM
- Buffer for hard disk drive
 - Replace DRAM


Key requirements

Application examples

- Lower temp process is OK
- 0 C 70 C operation
- 256 Mb 1 Gb and up
- 30 70 ns read/write
- High endurance (10¹⁰ 10¹⁵)

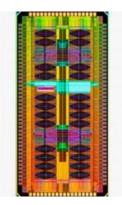
Embedded Non-volatile

Replace NOR eFlash to store:
Microcontroller code
Encryption key storage
Trimming and calibration

- 400C process required
- -40 C 105/125/150 C
- 1-64 Mb
- 30 ns read, 200 ns write
- Low endurance: 10⁶

Mobile Cache

Replace SRAM for low performance & power apps


- Wearable electronics
- Co-processors
- Internet of Things

- 400C process required
- 0 C 85 C operation
- 1-64 Mb
- 10 ns read/write
- High endurance (10¹² 10¹⁷)

Last Level Cache

- Fast dense memory for L3
 or L4 cache
- Alternative to eDRAM

- 400C process required
- 0 C 85 C operation
- 1 Gb and up
- 1 2 ns read/write
- Unlimited endurance (10¹⁸)

Increasing difficulty

Daniel Worledge

MRAM Developer Day

8/5/19

MRAM in Edge AI and AloT

Terry Torng

***Stealth Startup** co-founder Gyrfalcon Technology Inc

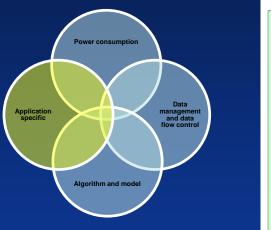
Santa Clara, CA August 2019

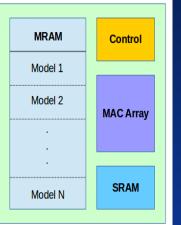
Core Challenge To AI: Energy Efficincy

- Data Center Energy Use is Growing....
- "Global data centers used roughly 3% of total electricity in 2016, and will double every four years"
- Radoslav Danilak, December 15, 2017

- "Global IP traffic will increase nearly threefold over the next five years, and will have increased 127-fold from 2005 to 2021."
- Bill Kleyman, Mar 09, 2018

Edge and IoT Devices....


 "Al is hungry for processing power. IoT is projected to exceed 20b devices by 2020. There are currently 10b internetconnected devices, doubling to 20 billion will require massive increases to our data center infrastructure, which will massively increase our electricity consumption." Radoslav Danilak, December 15, 2017



Need to make us greener... 5G is coming.....

MRAM for AI

Challenges for the Edge Al

Memory : 75 to 80+ % of chip area Memory : 67% or more leakage power

SRAM like MRAM:

- 1. Few ns read/write,
- 2. 10¹⁶ endurance,
- 3. memory density 3 : 1 or more vs SRAM.

Goal:

1. Chip size ½ of less.

2. AloT (low duty), 60% less power consumption than SRAM only solution.3. less than 1mw "high performance" Al accelerator for edge or AloT

PPP (power, performance and price) Now, Next and Future

- Hardware/software/MRAM co-design
- Simplify circuit design
- Manufacturing friendly for foundries
 - high DR/R materials and different thermal budget processes...
- OST, SOT, voltage-controlled and MLC MRAM compatible
- Chip/wafer yield friendly

What is the main segment for MRAM in 2024? <My Position> e-Memory of Logic @ 2024

	CMOS MTJ		смоя	MTJ	Other NVM	
	SRAM-LLC	STT-MRAM(S)	eFlash	STT-MRAM(F)	ReRAM	PCRAM
Operation Voltage	<1.1 V	<0.5 V 🙂	12 V	<0.5V 😜	> 6.5 V	> 1.8 V
Write Current	10 ⁻⁵ A	10 ⁻⁵ A	10 ⁻⁴ A	10 ⁻⁵ A 🙂	10 ⁻⁴ A	10 ⁻⁴ A
Write Speed	<10ns	<10 ns	10000 ns	<200 ns 😮	50 ns	100 ns
Read Speed	<5ns	<5 ns	30 ns	<25 ns	< 5 ns	< 5 ns
Retention	Volatile	1~Several Month	10Years	10Years	10Years	10Years
Endurance	10 ¹⁵	10 ¹⁵	10 ^{3~4}	< 10 ^{8~12}	10 ⁶	$10^9 - 10^{12}$
Cell Size	160 ~ 280F ²	12 ~ 28F ²	64 ~ 128F ²	6 ~ 14F ²	6 ~10F ²	4 ~ 19F ²
①Low Power ②Small Cell Size			1 Low Power (3 Better Endur	2) High Speed Write ance (4)Small Cell Size		

Which application / market will drive it? <My Position> Mobile, IoT, Car Electronics, AI, Robot etc

Final Panel on MRAM in 2024

Tetsuo Endoh @ CIES Tohoku University

What are the challenges?

<My Position> Improvement of MRAM Performance for each Application For higher level cache: High Speed Write & Low Write Power & over 10¹⁵ Endurance@128Mb-GbMRAM For e-Flash of Automotive Application: Excellent Thermal Stability (Δ) For Main Memory : Scalability & High Density Array

What technological breakthrough needed?

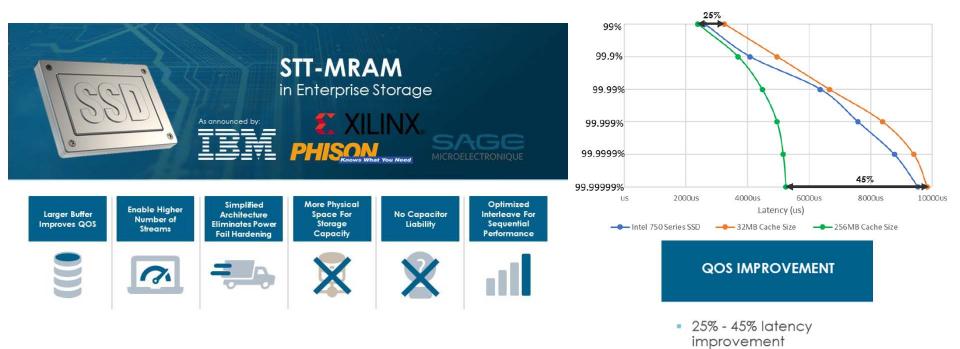
<My Position>

- 1) Advanced Process Technology
 - including High throughput & Damage Control Technology
- 2) Circuit Technology including ECC Technology
- 3) Testing Technology for mass production

Most critical problem of MRAM is our mind. ⇒ Tough Mind to believe MRAM Potential

MRAM Developer Day 2019 Santa Clara, CA

Data Persistence at Speed



MRAM Developer Day 2019 Panel: MRAM Application – Pros/Cons

Tom Andre VP Engineering, Everspin Technologies

STT-MRAM Applications Today

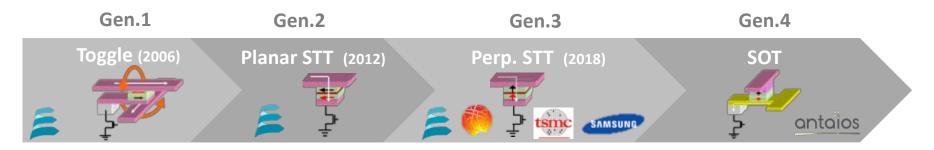
 Latency improvement is architecture dependent

MRAM Performance

FEATURES 1M x 16 MRAM • +3.3 Volt power supply Fast 35 ns read/write cycle		16Mb Toggle	256Mb ST-DDR3	1Gb ST-DDR4
EMD3D256M08BS1 EMD3D256M16BS1	VDD / VPP	3.3V	1.5V	1.2V / 2.5V
FEATURES 256Mb ST-DDR3 Spin-transfer Torque • Non-volatile 256Mb (32Mb x 8, 16Mb x 16) DDR3	Data Retention	20 years / 85C 2 years / 125C	3 months / 70C	3 months / 70C 10 yrs / 85C capable
	Endurance	>1e16 (>10yrs constant use)	1e10 cycles every page	1e10 cycles every page
FEATURES 1Gb Non-Volatile ST-DDR4 Spin-transfer Torque MRAM	Uniform 10yr writes per Chip	18 PBW (performance limit)	320 PBW (cycle limit)	840 PBW (performance limit)
 128Mb x8, 64Mb x16 Organization Supports most DDR4 features Page size of 1024 bits for x8, 2048 bits for x16 VDD = VDDQ = 1.2v 	Peak Bandwidth per x16 Chip	57MB/s	2.67GB/s	2.67GB/s
 VPP = 2.5V Operating Temperature of 0°C to 85 °C 667MHz clock frequency (fCK) On-Device Termination Multipurpose register READ and WRITE capability Per-Device addressability (PDA) Connectivity Test On-Chip DLL aligns DQ, DQS, DQS transition with CK transition Burst lengths of 8 addresses All addresses and control inputs are latched on rising edge of the clock 				

STT-MRAM Areas for Development

	Storage / SSD	Industrial	Auto	Aerospace
Application	Non-volatile Data Buffer/Cache/PMR	Non-volatile Data logs, params	Non-volatile Data params, buffer	Non-volatile Code, Data
STT-MRAM benefit	Write Bandwidth, Endurance	Endurance, Reliability	Write BW, End, Reliability	Rad Hard, Reliability
Density	128MB - >1GB	8MB - 128MB	128MB - >1GB	8MB – 128MB
Operating Temp	0C - 85C	-40C – 85C	-40C - 125C (Grade 1) -40C - 150C (Grade 0)	-40C – 125C -55C – 125C
Data Retention	3 months / 70C	10 years / 85C	Profile across temp	15 yrs / 105C
Endurance	Buffer: 1e10 every page PMR: >1e15 total	varies by app >1e15 total	varies by app	varies by app
Peak Bandwidth	5GB/s - >12GB/s	10MB/s – 2GB/s	10MB/s – 2GB/s	<100MB/s

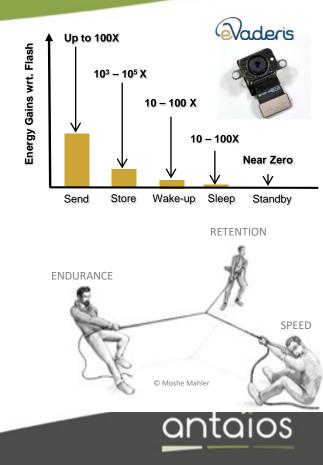


MRAM Developer Day August 5, 2019

Mission Statement : Jointly develop and license SOT (technology and IPs) as the **next-generation MRAM** that solves STT shortcomings

Endurance-Retention-Speed tradeoff → Limited to e-NVM applications

Infinite endurance / High intrinsic speed = Fully RAM compatible (enables Cache applications)


PERFORMANCES PROS & CONS (STT)

Pros

- Fast and low (write) power, beats eFlash hands down
 - Huge power savings at chip level (+ endurance)
- Fast and non volatile
 - Zero standby power, zero leakage, unlike SRAM

Cons (STT)

- STT not RAM compatible
 - o Endurance / speed / retention trilemna
 - Low read window = limited read speed
 - Heavy ECC needed (cost, performance limitations)

24

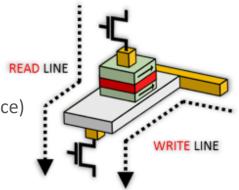
"Low Hanging Fruit" Market : IoT

In particular for those applications involving large amounts of data for which power and endurance are key (ex. Data logging, audio/video monitoring)

Other "near-ready" markets

- Automotive Provided the temperature/reliability specs are met
- Al chips Killer benefits of MRAM (can hold data during compute) STT good enough as-is, but SOT should be even better

STT is excellent for NVM (e-Flash) replacement, but full benefit of MRAM migration will be achieved when cache (e-SRAM) is addressed as well


ACTIONS NEEDED (AS NEXT STEP)

To unleash full potential of embedded MRAM ...

- Improve device towards RAM requirements
 - Need speed AND endurance at the same time
 - STT won't do it Need something new
 - <u>SOT is the only solution (fast write & infinite endurance)</u>
 - Improve read margin to raise (read) speed
 - By materials (TMR increase)
 - By design (device and chip level)

To address standalone market ...

- Achieve high capacities (>Gb)
 - Control of BER, distribution (tails), ...
 - Dedicated memory process / architecture for high density (low F2)

