

Using MRAM in Inference Engine Application

Terry Torng

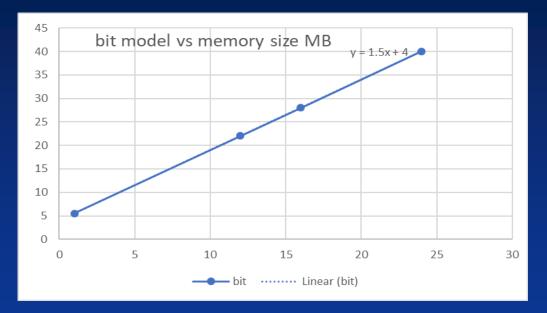
***Stealth Startup** co-founder Gyrfalcon Technology Inc

- Why NVM for AI
- Application Specific Accelerator Architecture
- Embedded MRAM AI Accelerator
- Case study examples

Core Challenge To AI: Energy Efficincy

- Data Center Energy Use is Growing....
- "Global data centers used roughly 3% of total electricity in 2016, and will double every four years"
- Radoslav Danilak, December 15, 2017

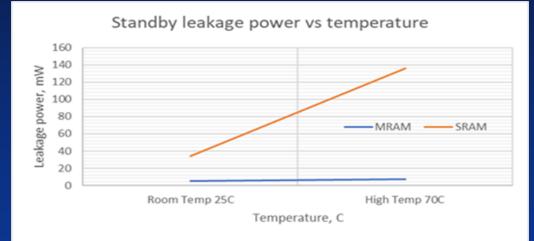
- "Global IP traffic will increase nearly threefold over the next five years, and will have increased 127-fold from 2005 to 2021."
- Bill Kleyman, Mar 09, 2018


Edge and IoT Devices....

 "Al is hungry for processing power. IoT is projected to exceed 20b devices by 2020. There are currently 10b internetconnected devices, doubling to 20 billion will require massive increases to our data center infrastructure, which will massively increase our electricity consumption." Radoslav Danilak, December 15, 2017

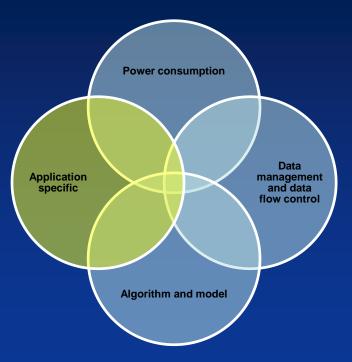
Need to make us greener... Al and 5G coming.....

Accuracy


The higher the bit model, The better the accuracy.

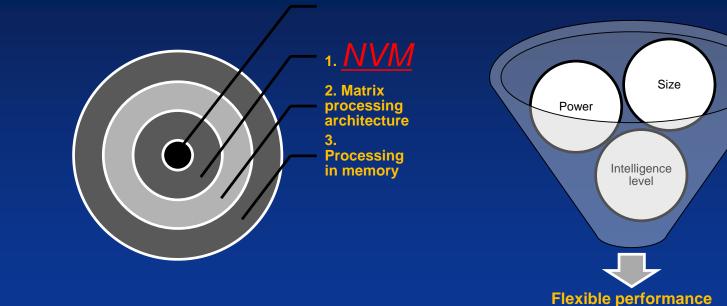
Intelligence level

Active power


Memory intensive applications

Low duty cycle applications

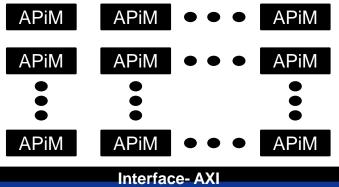
Architecture

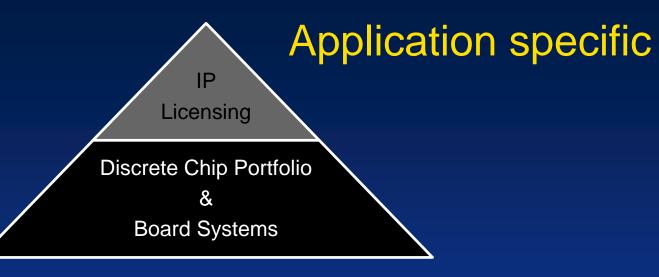


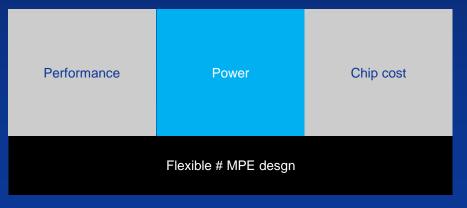


Hardware, Software and Memory co-design

Application specific

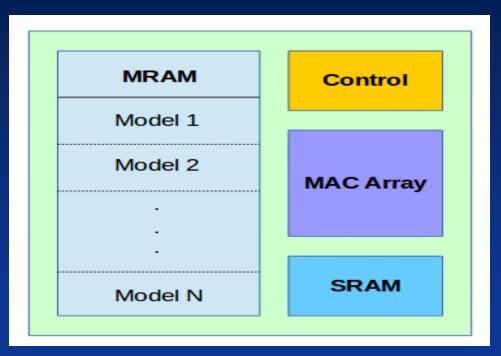





Accelerator Architecture

MPE (Matrix Processing Engine) using APiM (AI Processing in Memory) Architecture: 42 x 42 APiMs = 1 MPE 16 MPEs in 280X = 28,224 total MACs

Embedded MRAM Al Accelerator



Hardware/Software/MRAM co-design

Typical Embedded MRAM Al Design	GTI's GME Engine Design		Other eMRAM	RRAM (R&D)	GTI'S eMRAM	SRAM
Processing Core w/ AI engine		No Leakage power	Yes	Yes	Yes	Very High
	Processing Core w/ AI engine + MRAM peripheral	Cell Size	Small	Small	Small	Very Big
$\downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow$	No Size penalty for distributed memory	No	No	Yes	No
MRAM Peripheral + Array	MRAM Array	Endurance	E6 to E12	E5	E9 to E15	E15
		NVM	Yes	Yes	Yes	No
		Latency	High	High	Low	Low
Santa Clara, CA August 2019		Dynamic power	High	High	Low	Low 13

Block Diagram for MRAM AI chip to load multiple models

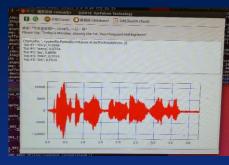
Industry's 1st Production AI Chip (Lightspeeur®2802M) With Embedded MRAM

The GME™ (Gyrfalcon MRAM Engine)

Additional Specifications:

- 9.9 TOPS/W
- 22nm ASIC
- 20-50% power savings (SRAM, "other MRAM")

Customization Options for Large Scale Customers:


- Up to 5 ns Read Speed
- Supports multiple models on single chip
- Flexible intelligence level

	GTI's eMRAM	Other eMRAM	SRAM	RRAM
Non-volatile Memory	~	~	×	~
No Power Leakage	~	~	×	~
Small Cell Size	~	~	*	~
No Size Penalty for Distributed Memory	~	*	*	*
Low Latency	~	*	~	*
Low Dynamic Power	~	*	~	*
Endurance	E9 - E15	E6 - E12	E15	E5

Multi-filters model demo

Voice command

Voice ID

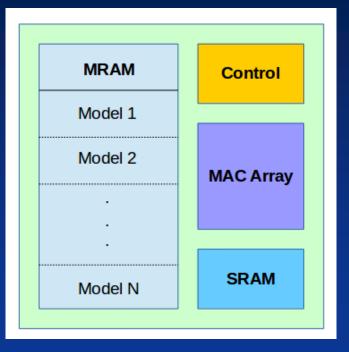
Facial Recognition

Hardware/software/MRAM proprietary co-design

- Simplify circuit design
- Manufacturing friendly for foundries
 - high DR/R materials and different thermal budget processes...
- OST, SOT, voltage-controlled and MLC MRAM compatible
- Chip/wafer yield friendly

- Open the door (Voice ID, voice commands or facial recognition);
- "It's me", "Wally, open the door".....
- Start the engine;
- "Wally, let's go", "fire up"

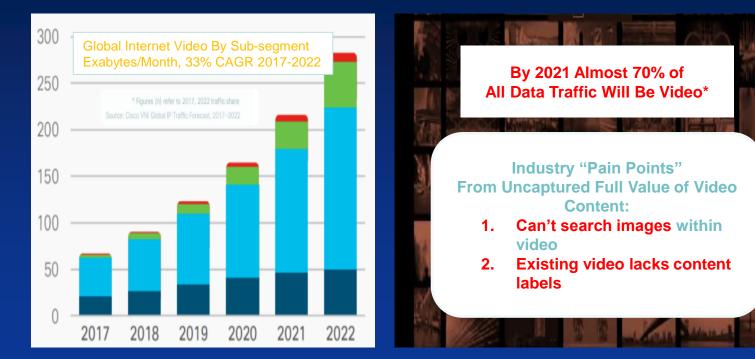
- Turn on/off the radio, GPS, air condition, make phone call.....Local
- More safe and secure for you as driver and your passengers!



Case II -- Remote areas or smart city/smart home

 Power down due to nature disasters, human error or machine failure ---- no reload needed

** Replace SRAM with SRAM like MRAM (ns read/write, e16 endurance besides memory density...)


**memory occupy 75 to 80+ % area

**Replace SRAM with MRAM, chip size will be half? Besides power saving.....

** less than 1mw AI accelerator

Case IV Video Content Taking Over Global Data Traffic Creates Opportunities AND Challenges.....

Video "Pain Points" Create New Industry Opportunities

Visual "Search" for Specific Content

- Search based on picture not descriptive text
- 2. Images used to search existing video files for matching content

Video "Data Mining/Retrieval"

- 1. Converts existing video to video with labeled content
- 2. Labeled content becomes searchable within each frame
- Superior user experiences
 New business models

Until Now, No Solutions...

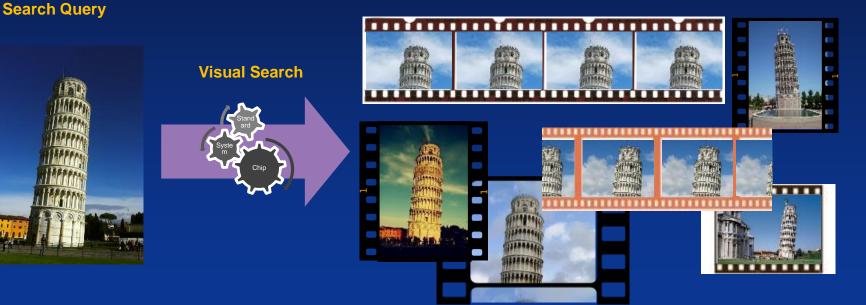
No Current Industry Standards

 For Video Data Mining/Retrieval

MPEG2 MPEG4 WECKING MPEG4 WECKING MPEG4 MPEG2 MECA M

Tremendous Computing Efforts

- Expensive computing resources
- Manual labor intensive
- ♦ 10³ descriptors per frame
 ♦ 10⁶ comparisons to match two frames!
 ♦ 300k hours archive ~ 10¹⁰ frames
 ♦ 10⁶x10¹⁰ = 10¹⁶ comparisons
 ♦ 3x10¹⁸ FLOPS Needed!



	CDVA S	tandard		GTI CDVA						
Input Size	640x	640x480		640x480				PRECISE		
CNN Model Format	Floating-poi	Floating-point VGG-16 59M byte		xed-point VGG-1	6	K	&			
CNN Model Size	59M			4M byte			SMALLER MODEL			
Output Vector (Descriptor) Size	512	byte		512 byte			SIZE			
Mean Avg Precision Score	86.8	81%		88.95%						
ир то 1.9X	up to 16x FASTER			Pre- processin g (ms)	CN	N (ms)	Extract vector (ms)	Total (ms)		
FASTER EXTRACTION TIME THAN GPU	EXTRACTION TIME THAN	GTI CDVA		80 ms	8	88 ms	15 ms	190 ms		
	<u>CPU</u>	CDVA Standard (GPU)		260 ms	7	′8 ms	15 ms	353 ms		
		CDVA Standard (CPU)		260 ms	28	800 ms	15 ms	3075 ms		

ENHANCE YOUR SEARCH EXPERIENCES

Search Results (from video archives, service providers, database...)

CDVA Provides the Industry Standard.....

w18269-MPEG-CDVA_WhitePaper (Last saved by user) - Word

INTERNATIONAL ORGANISATION FOR STANDARDISATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC1/SC29/WG11 CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11/NXXXXX January 2019, Marrakech, MA

× _

Title: White Paper on CDVA Source Communication Status: Approved

Compact Descriptors for Visual Analysis (CDVA) – Efficient Search in Large-scale Video Content

Managing and organizing the quickly increasing volume of video content is a challenge for many industry sectors, such as media and entertainment or surveillance. One example task is scalable instance search, i.e., finding content containing a specific object instance or location in a very large video database. This requires video descriptors which can be efficiently extracted, stored and matched. Standardization enables extracting

Compact descriptors for video analysis for search and retrieval applications: 1.Enable design of interoperable object instance search applications 2.Ensure high matching performance of objects

Approved Neural Network:

VGG16(Trained By ImageNet ILSVRC) - No IP Issues

