

MRAM Technology and Market Trends

Simone Bertolazzi, Ph.D. Technology and Market Analyst, Yole Développement

Yole's Global Activity

Yole Développement - Fields of Expertise

Life Sciences & Healthcare

- o Microfluidics
- BioMEMS & Medical Microsystems
- Inkjet and accurate dispensing
- Solid-State Medical Imaging & BioPhotonics
- o BioTechnologies

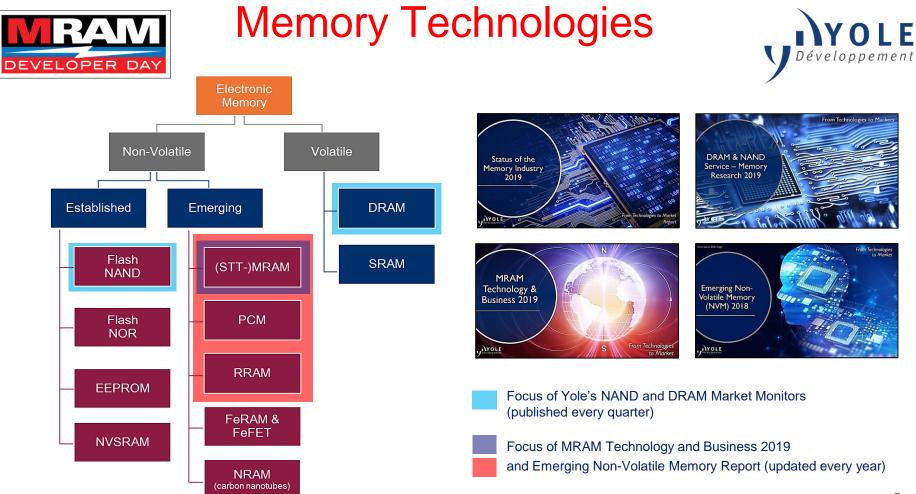
Power & Wireless

- o RF Devices & Technologies
- Compound Semiconductors & Emerging Materials
- Power Electronics
- o Batteries & Energy Management

Semiconductor & Software

- Package, Assembly & Substrates
- Semiconductor Manufacturing
- o Memory
- Software & Computing

Photonics, Sensing & Display


- Solid-State Lighting
- Display
- o MEMS, Sensors & Actuators
- \circ Imaging
- Photonics & Optoelectronics

About Yole's Memory Team

Walt Coon VP of NAND and Memory Research	Mike Howard VP of DRAM and Memory Research	Simone Bertolazzi, PhD Technology & Market Analyst Memory	Ivan Donaldson VP of Yole Finance	Emilie Jolivet Division Director Semiconductor & Software
Experience: 20 years in Memory	Experience: 15 years in Memory	Experience: 8 years in Emerging Semiconductors and Devices	Experience: 14 years in Semiconductor Industry Strategy, Business Development, and IR	Experience: 9 years in Equipment, Manufacturing, Processing
At Yole: NAND	At Yole: DRAM	At Yole: Emerging Memory	At Yole: Manages all services and relationships for global financial clients	At Yole: Embedded Technologies, 3DIC & Manufacturing

o Overview of the Memory Market

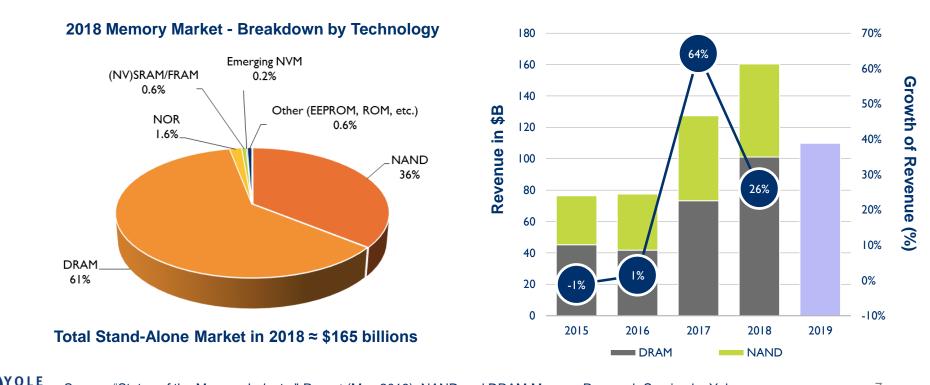
Established and Emerging Memory

• (STT-)MRAM Technology - Overview

Comparison with Other Memory Technologies

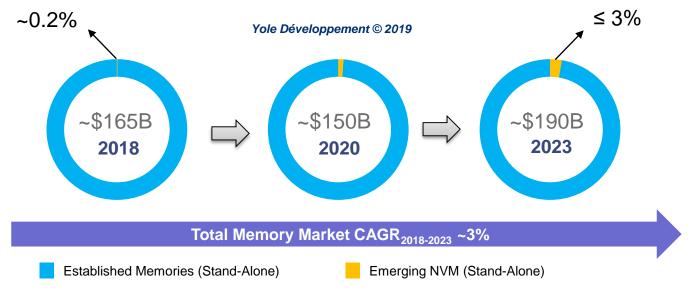
• (STT-)MRAM Market and Ecosystem

Applications & Players' Dynamics


Market Projections and Outlook

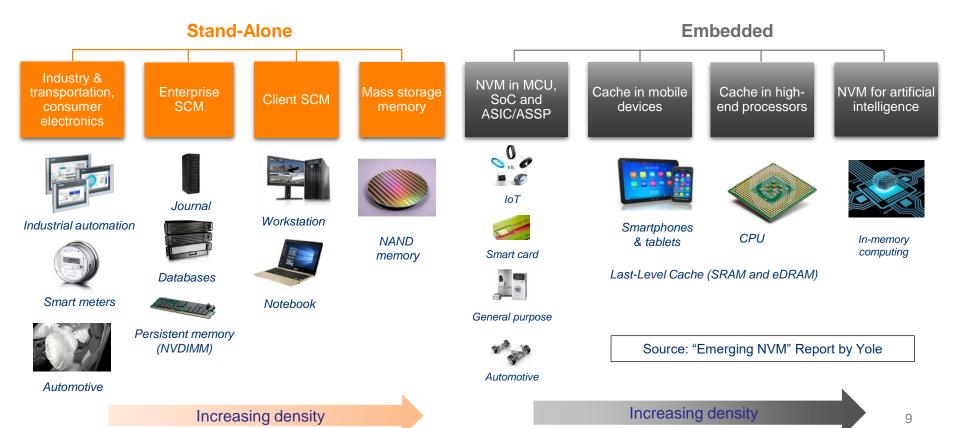
Développement

Stand-Alone Memory Market - Overview


- NAND and DRAM account for $\approx 97\%$ of the overall stand-alone memory market.
- Combined NAND and DRAM revenue was ≈ \$160 billion in 2018, up 26% from 2017.

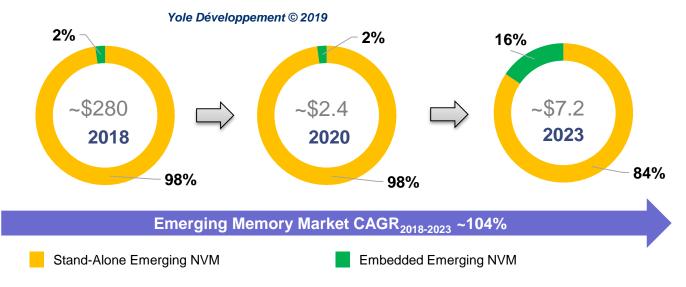
Emerging NVM Market - Overview

- Flash NAND and DRAM will maintain their leading position over the next five years thanks to new technical solutions enabling further scalability.
- Emerging NVM is gaining significant momentum, but will remain below 3% of the total stand-alone memory market.



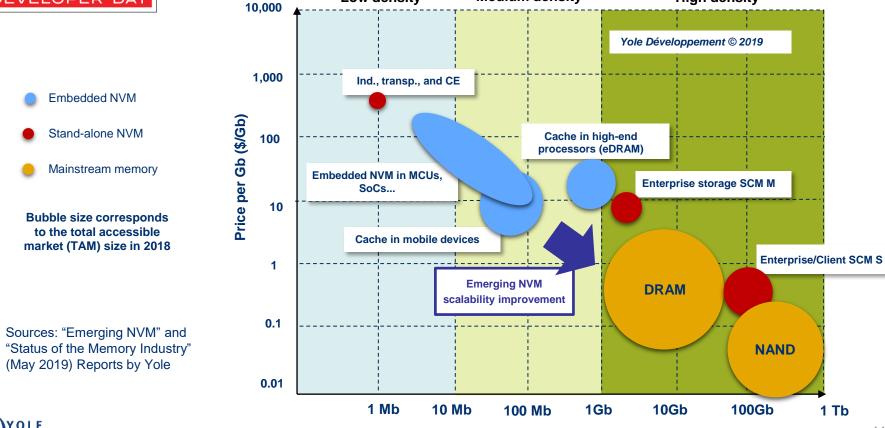
Source: "Emerging NVM" and "Status of the Memory Industry" Reports by Yole

Emerging NVM Applications



Stand-Alone vs Embedded NVM

- Stand-alone memory will be the dominant market and is driven primarily by Storage Class Memory (SCM) enterprise and client applications (3D XPoint).
- Embedded applications are gaining momentum and will be reaching 16% of the emerging NVM market by 2023



Source: "Status of the Memory Industry" and "Emerging NVM" Reports by Yole

Medium density

High density

Low density

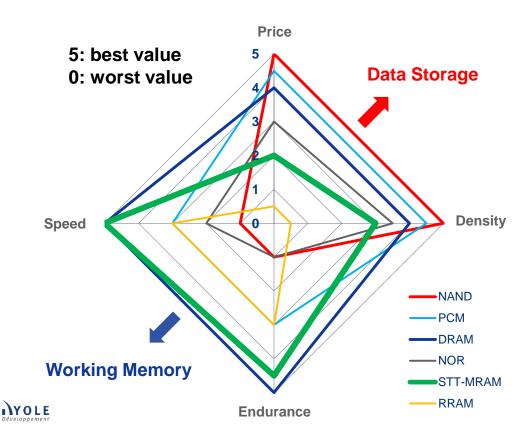
DEVELOPER DAY

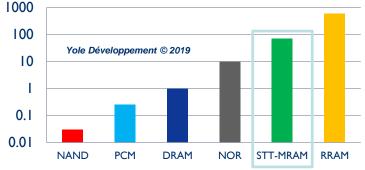
Développemen

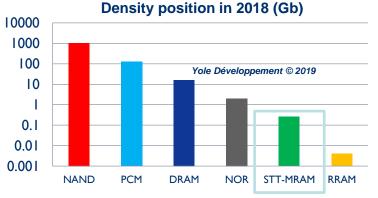
Chip Density

Memory Technology Comparison

2018 stand-alone commercial products performance


	STT-MRAM	PCM 3D XPoint	RRAM	DRAM	Flash NAND	Flash NOR
Non-volatile	YES	YES	YES	NO	YES	YES
Byte addressable	YES	YES	YES	YES	YES	YES (but not for erase)
Endurance (# cycles)	High (>10%)	Medium (10 ⁷)	Low (10 ⁶)	High (10 ¹⁵)	Low (10 ⁵)	Low (10 ⁵)
Maximum density for products in 2018	256Mb (IGb ready)	128Gb	4Mb	I6Gb	ΙТЬ	2Gb
Cell size (cell size in F ²)	Medium (6-30)	Small (4/2L)	Medium (6-30)	Small (6-8)	Very small (4/96L)	Medium (6-30)
Speed (Latency)	Fast (~10 ns)	Fast (10-100ns)	Medium (~100 ns)	Fast (~10 ns)	Slow (100,000ns)	Slow write (100,000ns)
Switching Power	Medium/Low	Medium	Medium	Low	High	High
2018 price (\$/Gb)	High (\$10-100/Gb)	Low (≤ \$0.5/Gb)	High (\$100 - 1000/Gb)	Low (\$0.97 Gb)	Very low (\$0.03/Gb)	Medium (\$10/Gb)
Key suppliers	Everspin, Avalanche	Micron/Intel	Adesto, Fujitsu	Samsung, Micron, SK hynix, Nanya	Samsung, Micron, Toshiba, WDC, SK hynix, Intel	Micron, Winbond, Macronix, Cypress- Infineon, GigaDevice




Memory Technology Comparison

2018 stand-alone commercial products performance

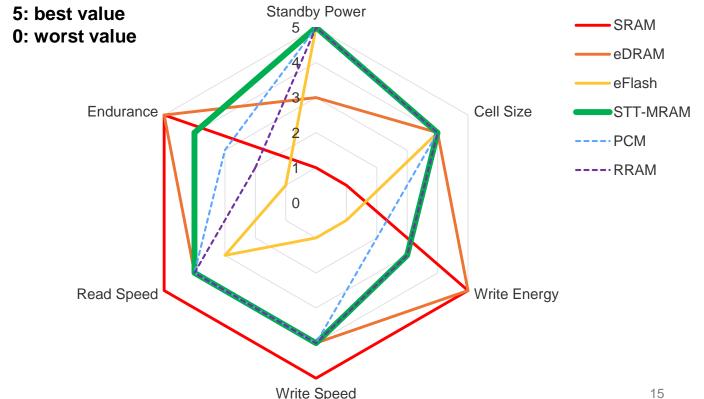
Pricing position in 2018 (\$/Gb)

Stand-Alone STT-MRAM Roadmap

Chip density and technology node scaling - Comparison with DRAM

• STT-MRAM will target enterprise storage (SCM) applications for a long time before trying to substitute DRAM.

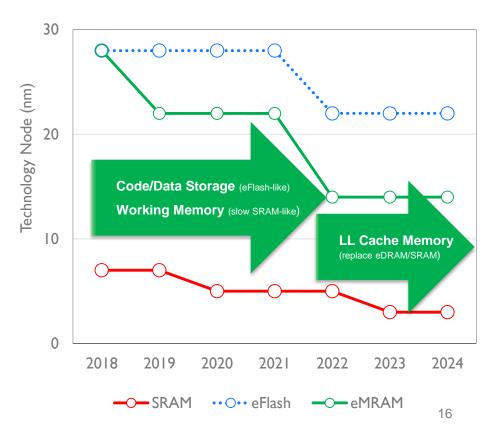
Stand-alone memory density roadmap (Gb)

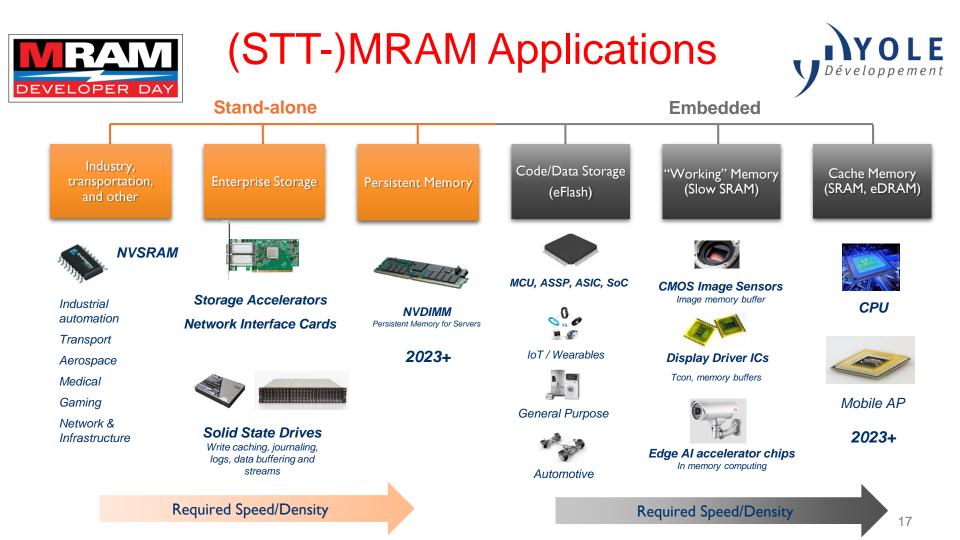

Technology-node scaling (nm)

Embedded Memory Technologies

Comparison of embedded technologies (based on technical literature data)

Among established and emerging embedded memory technologies, STT-MRAM is promising as it offers a combination of persistence, lowpower consumption, high speed and high endurance




Embedded MRAM is Taking Off!

Embedded Memory Technology Highlights

- **eFlash scaling is reaching its end**: 28nm/22nm will be likely the last technology nodes.
- **SRAM scaling is also slowing down**. The cell footprint (# of *F*²) degrades at advanced FinFET nodes
- STT-MRAM offers non-volatility together with **low power consumption**, which is ideal for low-power MCUs, wearables and IoTs.
- STT-MRAM offer a significant **density gain over SRAM**. At advanced nodes (≤1xnm) more than ×3 gain.

→ Thanks to strong support of top foundry/IDM players and equipment suppliers, embedded STT-MRAM is poised to become the next embedded NVM solution for nodes \leq 28nm.

The MRAM Ecosystem is Growing

An increasing number of players are involved in the MRAM arena

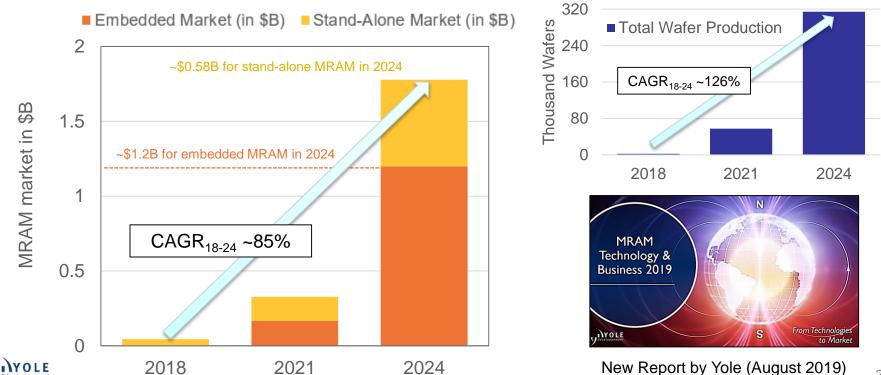
Embedded MRAM Business

Key partnerships and developments for leading players.

Foundry / IDM	t <u>sne</u>	CLOBALFOUNDRIES'	SAMSUNG	UMC	(intel)	To be announced
(STT-)MRAM Players - Partners	⊗TDK		IBM	Son Programmatic Strage Solutions		SPIN MEMORY [™]
Technology Process	CMOS bulk 22nm planar (sampling)	FD-SOI 22nm planar (sampling)	FD-SOI 28nm planar (in mass production)	CMOS bulk 28/22nm planar (in development)	CMOS 22nm FinFET (sampling)	28/22nm
Expected Short- Term Application	"Slow" SRAM	eFlash	"Slow" SRAM	eFlash "Slow" SRAM	eFlash "Slow" SRAM	"Slow" SRAM

Embedded MRAM Business

Challenges and developments by equipment suppliers


Critical Challenges	Key Equipment Suppliers (Example of Tools)				
• Deposition of MTJ stack Goal: high-quality stacks via real- time property monitoring	CANON ANELVA CORPORATION CENTION (System Endura Clover) (NC7900) (EXIM)				
• Etching of MTJ cells Goal: high-density, narrow pitch	Canon MATERIALS.Canon ANDN ANELVA CORPORATIONTEL TOKYO ELECTRONImage: Canon RESEARCHImage: Canon Canon (Kyio)Image: Canon (Kyio)Image: Canon (E-9000)(System Centura)(NC8000)(Tactras)(Kyio)(E-9000)				
• Testing and Metrology Goal: high-speed measurement of electrical and magnetics properties	Image: MicroSense Image: Capres (IBEX 300/FD) (T5385ES) (Polar Kerr System) (CIPTech)				

Développemen

(STT-)MRAM Market Projections

Market Forecast for Embedded and Stand-Alone (STT-)MRAM

- Thanks to strong support of top foundry/IDM players and equipment suppliers, embedded STT-MRAM is poised to become the next embedded NVM solution for technology nodes ≤ 28nm.
- The embedded STT-MRAM market has the potential to grow up to ~\$1.2B by 2024, driven by code/data storage and "slow" working memory applications.
- The stand-alone (STT-)MRAM market is expected to grow less vigorously than its embedded counterpart, with revenues up to ~\$580M in 2024.
- In the coming years, enterprise storage (SSD caching, storage and network accelerators) will be the leading stand-alone STT-MRAM applications.

Thank you for your attention Questions?

Simone Bertolazzi, Ph.D. bertolazzi@yole.fr