

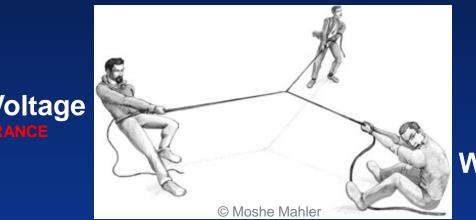
MRAM Developer Day 2019 MRAM Update

Barry Hoberman

- Observations and opinions...
- ~40 years experience in wide variety of memory
- >13 years experience in MRAM
- 2012-2017 CEO/Chairman at Spin Transfer Technologies, Inc.
 - 2006-2012 Crocus Technology
- Currently consulting for young companies in emerging memory technologies

August 2019

MRAM at the Just Out of the Gate


MILESTONE!

	<2007	2008	2010	2012	2017-18	2019
Maximum Standalone Density	<4Mbit	4Mbit	16Mbit	64Mbit	256Mbit	1 Gbit
Magnetic Technology	GMR	MTJ Toggle	MTJ Toggle	MTJ Spin Transfer In Plane	MTJ Spin Transfer Perpendicular	MTJ Spin Transfer Perpendicular
Leading CMOS Support	~180nm	180nm	130nm	~90nm	28-40nm	22-40nm
Santa Clara, CA				Scaling Barrier Akthrough	~ 10 ⁸ units shipped	3

3rd Generation Constraint: STT MRAM 3-WAY Tug of War

Write Voltage

Write Pulse Width

3rd generation STT MRAM cannot simultaneously provide speed, endurance, and retention for high speed SRAM application – typically, speed and endurance sacrifice retention

Not Scalable beyond 130nm (write power)

Not Scalable beyond 65/40 nm (retention)

Fully scalable Fully scalable Endurance-Retention-Speed tradeoff Infinite endurance \rightarrow Limited persistence and/or endurance and/or speed

+ high intrinsic speed

= persistent RAM compatible

KEY OBSERVATIONS:

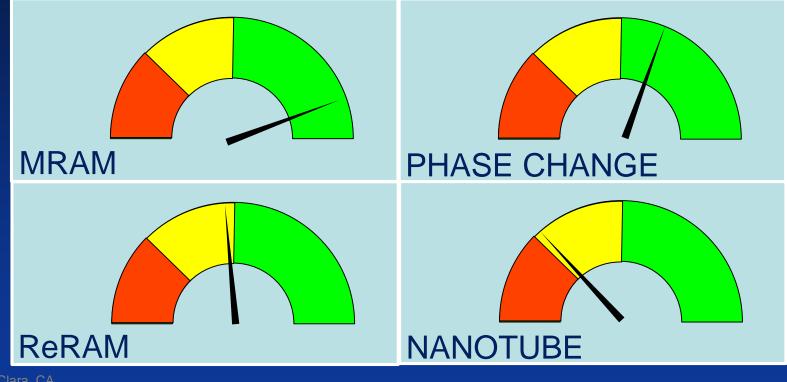
Embedded STT will never replace conventional SRAM in SOC

SOT promises to remove STT write endurance constraint

Santa Clara, CA

The Big News: Manufacturing Ramp at Foundries

- Samsung, TSMC, Global Foundries, Intel in ramp up in 22-28nm insertions
 - As 'embedded memory' in SOC
- STT-MRAM introduction primarily as 'roadmap substitution' for embedded NOR Flash replacement
 - Plus some use as 'pseudo' RAM
 - Compromises on speed, endurance, retention
 - Production in early ramp
- STT-MRAM not applicable as general purpose embedded SRAM replacement


More Big News:

Production Equipment Availability

- Essential 300mm tools with suitable wafer throughput and technical capability reaching availability
 - Applied Materials, TEL, Canon/Anelva
 - Magnetic film deposition and etch are principle requirements
 - Test & Measurement also H-probe
- Yield and other process control converging on manufacturable, but not yet equal to incumbent
 Santa Clara, memory types

Emerging Memory Technology Market/Production Momentum

Discrete MRAM in Storage 'The Low Hanging Fruit'

RAID systems

5-10+ memories per RAID system controller \$100-1000 per system 5M+ units/year

SSD / HDD controller

R/W cache, Logical/Physical Address Table, etc... in mission critical high performance\$1-4 per driveSDD\$50-100 per system in high end storage system1-2 memories per drive\$00M+ units per year\$10-20 per drive

150M units per year

"Front End" multi-Gb buffer

Critical mission: 'Protect Data in Flight'

Requires: Speed and Endurance of DRAM, with instantaneous power-off data retention

- 1. >1 Million IOP SSD
- 2. SOC Embedded Flash Replacement
- 3. Unified Memory (XIP) Microcontroller
- 4. 'High Training Rate/Low Training Energy' NVM Memory for AI
- 5. Big-Capacitor-Free Performance SSD
- 6. 'High Endurance' Flash Gap
- 7. Persistent Cache for Mobile CPU
- 8. SOC Embedded SRAM Replacement
- 9. Persistent Cache for Storage System
- 10. Rad Hard High Density Flash Replacement

'High Impact' MRAM Application Promise Top 10 List - Near Term Impact Predictions

- 1. >1 Million IOP SSD
- 2. SOC Embedded Flash Replacement
- 3. Unified Memory (XIP) Microcontroller
- 4. 'High Training Rate/Low Training Energy' NVM Memory for AI
- 5. Big-Capacitor-Free Performance SSD
- 6. 'High Endurance' Flash Gap
- 7. Persistent Cache for Mobile CPU
- 8. SOC Embedded SRAM Replacement
- 9. Persistent Cache for Storage System
- 10. Rad Hard High Density Flash Replacement

Editorial

Why new chip memory is so hard...

- Practical equipment/manufacturing barrier
 - Production fabs don't do development and cost \$5-10 billion
 - Full development today requires >\$200 million
 - New physical structures 'manufacturability' isn't known till late in development cycle
- Multi-dimensional 'chicken & egg' situation
- Takeaway: It's HUGE that leading CMOS foundries have installed production equipment, invested in processes, have announced support, and are on the threshold of MRAM production

(More) Editorial

Why new chip memory is so hard...

- Matching new technology manufacturing yield/performance curve to design expectations
 - Combining well-known CMOS yield characteristics with ambiguous and optimistic 'new device' yield statistics is hard
 - Cross-functional engineering teams universally underestimate
- Takeaway: Teams that focus on bridging both the 'yield curve gap' with margin and the 'cross-functional interdependency gap' will win in this emerging market

- Key future application of MRAM
 - Example: Flash and SRAM collapsed into single memory in microcontroller
- Benefit modeling is complex...cost, power/energy, performance/latency
- Memory partitioning an open question
 - Fixed code updates, scratch RAM, variable storage, protected address space, etc
- Memory cycle/speed provisions: wait states, error recovery, cache support, etc
- Design tool requirements?...debugger, compiler/assembler, etc
- User group in formation....contact me if interest...

- The first action you should take is to save this presentation
 - You have opened a design template (.pot)
 Need to save as .ppt
- A master exists for:
 - Slides
 - Handouts default is 3 to a page
 - You can print a different number, but no guarantees about appearance

- The first action you should take is to save this presentation
 - You have opened a design template (.pot)
 Need to save as .ppt
- A master exists for:
 - Slides
 - Handouts default is 3 to a page
 - You can print a different number, but no guarantees about appearance

