

Factors Driving Enterprise NVMe[™] Growth

Sponsored by NVM Express™ organization, the owner of NVMe™, NVMe-oF™ and NVMe-MI™ standards

Speaker

Gary Kotzur

Overview

With the increased availability and awareness of NVMeTM products, more enterprises are making the transition to NVMe. Join our panel discussion to learn how server and storage vendors are helping make this transition possible.

NVMe[™] SSD Technology Trends

Lower costs

- Natural market decreases
- Technology advances

Capacity is increasing

- More layers
- More levels: TLC → QLC
- Die per package increasing

Performance is increasing

- Media: SCM
- Interface: PCle[®] 3.0 → 4.0 transition, 5.0 is coming

Power levels are sustaining

- Media
- Interfaces

Addressing Customer Expectation Gaps

- Enhanced Serviceability
 - PCI-SIG® work group added new features
 - All OS vendors have support plans
- Decreased Costs
 - Infrastructure costs are dropping
 - Switched and direct connectivity
 - Modality of device ports
- More "Data Protection" Options
- Security
- Management

Expanding Ubiquity

- Wide adoption across all segments: Enterprise → Client
- NVMeTM support is expanding throughout Enterprise / Data Center products
- Native OS and OSV driver support
- Increased "Data Protection" options
- Native Fabric support → NVMe-oFTM
- Increased Media choices → Flash & SCM
- In summary → SSDs are converging on NVMe

Consolidation

- SSD Form Factor
- Incumbent Form Factor adoption: SD, XD
- Storage Device Interface
- NVMe-oFTM variants
- Modality of device ports

Challenges → Opportunities

- 1. Flash Performance Density
- 2. PCle® Distance
- 3. Computational Storage
- 4. Block → Key Value

Speaker

Steve McQuerry

NVMe[™] in Enterprise Storage Arrays Overview

- More storage Arrays are being built as all flash platforms for enterprise deployments
- These platforms are optimized for performance and capacity
- NVMeTM has become a key component when using flash in enterprise products
- Many all flash arrays are adopting NVMe as the preferred protocol
- NVMe-oFTM connectivity is providing additional benefits of extending the NVMe protocol outside of chassis directly to the client or to expansion shelves

NVMeTM Implementation Case Study

We are looking at Pure Storage as a specific case study in the implementation and use of NVMeTM technologies. This is not a product endorsement by NVMe Express.

- As all flash became a component in block storage arrays, the initial protocol was still SCSI
- NVMe provided significant performance improvements over the SCSI protocol
- In order to get the benefits all flash arrays would need to transition users from an end to end SCSI experience to an end to end NVME experience

NVMe[™] Transports

Memory Data & Commands/Responses use shared memory Example: PCI Express

NVMe™ Transports

Capsule = Encapsulated NVMe Command/Completion within a transport message **Data** = Transport data exchange mechanism (if any)

NVMeTM Implementation Case Study

- The first step to providing NVMeTM capabilities within the Array Chassis
- From a buy or build perspective NVMe platform availability was limited until recently
- Customers were able to get the benefits of NVMe within the array, but the initiator, fabric, and in some instances expansion shelves were still using SCSI

NVMeTM over Fabrics Backend Implementation example

- The next step was to extend NVMeTM capabilities to the shelves
- Transport choices included PCIe or NVMe-oFTM, in the case of Pure Storage we chose NVMe-oF specifically NVMeTM/RoCE
- This extended the NVMe experience and allowed extra capacity without sacrificing the protocol benefits

NVMe[™] over Fabrics Frontend Implementation example

Summary

- When working with an All Flash Array, it makes sense to leverage NVMe[™]
- Customers are able to absorb NVMe into their environment without making significant changes to their infrastructure
- NVMe-oF[™] makes it possible to extend the benefits of NVMe outside the chassis and all the way to the host to provide and end-to-end NVMe experience
- There is still work to be done on the OS Ecosystem and feature parity for NVMe-oF but the level of customer interest is increasing

Questions?

