PMTEST
Testing Persistent Memory Applications

Samira Khan

UNIVERSITY
JVIRGINIA

M

Flash Memory Summit

TWO-LEVEL STORAGE MODEL

CPU

VOLATILE
FAST
BYTE ADDR

NONVOLATILE
SLOW
BLOCK ADDR

S
(2
@
=
L
=

STORAGE

TWO-LEVEL STORAGE MODEL

VOLATILE
FAST
BYTE ADDR

SLOW
BLOCK ADDR

STORAGE

Non-volatile memories combine characteristics
of memory and storage

VISION: UNIFY MEMORY AND STORAGE

o2
s 3

wn
<&
O -
23
< 5

Provides an opportunity to manipulate
persistent data directly in memory

Avoids reading and writing back data
to/from storage

CHALLENGE: NEED ALL STORAGE SYSTEM SUPPORTS

APPLICATION APPLICATION
OS/SYSTEM Cra Sh OS/SYSTEM
Ld/st Consistency
FILE ' /5,1:
/O

MEMORY
PERSISTENT
MEMORY

Overhead in OS/storage layer overshadows
the benefit of nanosecond access latency of NVM

STORAGE

CHALLENGE: NEED ALL STORAGE SYSTEM SUPPORTS

APPLICATION a

%{ Crash
Consistency
FILE
/O Ld/S

Not the operating system,
Application layer is responsible for crash consistency in PM

CHALLENGE:
PM Programming is Hard!

Requirements and Key ldeas

PERSISTENT
MEMORY

Programming
Persistent

PMTEST: Interface and Mechanism

ASPLOS’19

Memory
Applications

Results and Conclusion

PERSISTENT MEMORY PROGRAMMING

e Support for crash consistency have two fundamental guarantees
e Durability: writes become persistent in PM
* Ordering: one write becomes persistent in PM before another

Volatile

Persistent

f Y

Core

.
i I

PM-DIMM

Durability Guarantee:
writeback data from cache
Flush A

PERSISTENT MEMORY PROGRAMMING

e Support for crash consistency have two fundamental guarantees
e Durability: writes become persistent in PM
* Ordering: one write becomes persistent in PM before another

Volatile

Persistent

Core

m]mrlIIIIIAIIIIIIITm““

PM-DIMM

Ordering Guarantee:

Write A before B
Writeback A
Barrier
Writeback B

PERSISTENT MEMORY PROGRAMMING

PM Programming

& Expert Normal &

e Uses low-level primitives e Uses a high-level interface
e Understands the hardware e Does not need to know details of
 Understands the algorithm hardware or algorithm

Two different ways to program persistent applications

10

PERSISTENT MEMORY PROGRAMMING (LOW-LEVEL)

e Hardware provides low-level primitives for crash consistency

e Exposes instructions for cache flush and barriers
 stence, clwb from x86
e« dc cvap from ARM
e Academic proposals, e.g., ofence, dfence.

L1111 L1111 L1111

1 kel 3 larv 1[SE
_TITTII_b _T]r1]_ —Tl[1l-
clw dc cva
lsfence ldsb ¥ Newll nstr
5 d 5 d 5 d
Sl UCE pEUDCUE (O
PM-DIMM PM-DIMM PM-DIMM

[Kiln’13, ThyNVM’15, DPO’16, JUSTDOLogging’16, ATOM’17, HOPS'17, etc.] 11

PROGRAMMING USING LOW-LEVEL PRIMITIVES

1 void listAppend(item_t new val) {
2 node_t* new_node = new node_t(new val); « Create new_node
3 new_node->next = head; > « Update new_node
% 4 head = new_node; « Update head pointer
5 persist_barrier(); Writes to PM can reorder 4m Writeback updates
6
} Head

e \

In cache

X

new_node is lost after failure Inconsistent linked list -

PROGRAMMING USING LOW-LEVEL PRIMITIVES

1 void listAppend(item_t new val) {
2 node t* new node = new node_ t(new val);
3 new_node->next = head;

4 headistnbarndde¢); <4mm Enforce writeback before changing head
5 persist _barrier();

07 Head

’ 4
—

Ensuring crash consistency with low-level primitives is HARD!

PERSISTENT MEMORY PROGRAMMING

PM Programming |
Normal &

e Uses a high-level interface
e Does not need to know details of
hardware or algorithm

14

PERSISTENT MEMORY PROGRAMMING (HIGH-LEVEL)

e Libraries provide transactions on top of low-level primitives
* Intel’s PMDK
e Academic proposals

AtomicBegin {
Append a new node;

} AtomicEnd;

Uses logging mechanisms to atomically commit the updates

[NV-Heaps’11l, Mnemosyne’ll, ATLAS 14, REWIND’15, NVL-C’16, NVThreads’17 LSNVMM’17, etc.]

PROGRAMMING USING TRANSACTIONS

1 void ListAppend(item_t new_val) {
2 TX_BEGIN {

3 node_t *new_node = makeNode(new val); - Create new_node
4 TX_ADD(list.head, sizeof(node t*)); 4mm backup head

5 List.head = new_node; - Update head

6 x ist.length++; - Update Iength

; } } TX_END Iength is not backed up before update!

16

PROGRAMMING USING TRANSACTIONS

1 void ListAppend(item_t new val) {

TX _BEGIN {
node_t *new_node = makeNode(new_val);
TX_ADD(list.head, sizeof(node t*));
List.head = new node;
CxsaDbEébgsi+tength, sizeof(unsigned));

y RN N Backup 1ength before update “

N O 01~ WON

Ensuring crash consistency with transactions is still HARD!

17

PERSISTENCE MEMORY PROGRAMMING IS HARD

LEFX

PM Programmlng

4’ Normal &

& Expert

Both expert and normal programmers can make mistakes

PERSISTENT MEMORY PROGRAMMING IS HARD

X

Detect crash consistency bugs

We need a tool to detect crash consistency bugs!

CHALLENGE:
PM Programming is Hard!

NON.VOLATILE MEMORY Requirements and Key ldeas

PERSISTENT
MEMORY

Programming
Persistent

ASPLOS’19

Memory
Applications

20

REQUIREMENTS OF THE TOOL

Fast Flexible

PM Libraries

) R
‘ o}

Kernel Modules Custom Programs

Existing HW Future HW and Models

[PMDK, NV-Heaps’11, Mnemosyne’11, ATLAS’14, REWIND’15, NVL-C’16,
[PMFS’14, BPFS’09, NOVWNTBready/A FbEteY MiMehfa Bt 4h s cayIkS| N MDELS, AHQBS AR Mt celtc.
21

PMTEST KEY IDEAS: FLEXIBLE

 Many different programming models and hardware primitives available

PM Program PM Kernel Module

PM Program

Call library Call library

PMDK Library

Mnemosyne Library
write,]l sfence, clwb write, dclcvap, dsb

write,|sfence, clwb

The challenge is to support different
hardware and software models

PMTEST KEY IDEAS: FLEXIBLE

Operations that maintain crash consistency are similar:
ordering and durability guarantees

PM Program PM Kernel Module

Call library
PMDK Library

PM Program
Call library

Mnemosyne Library

Our key idea is to test for these two fundamental guarantees
which in turn can cover all hardware-software variations

PMTEST KEY IDEAS: FAST

* Prior work [Yat’14] uses exhaustive testing

sfence sfence sfence sfence sfence sfence
~ write A write B write C write A write B write C
O(n!)4- N wr-%te B wr'%te A write B wr'%te C wr‘?te C wr-::Lte A
write C write C write A write B write A write B

sfence sfence sfence sfence sfence sfence

)’

' 4

'

L T

Recoverable?

Exhaustive testing is time consuming and not practical

Y’

PMTEST KEY IDEAS: FAST

* Reduce test time by using only one dynamic trace

sfence

write C

Runtime Trace write B
) | vrite A
sfence

Persistent Memory Application

4

Recoverable?

A significant improvement over O(n!) testing

PMTEST KEY IDEAS: FAST

e PMTest infers the persistence interval from PM operation trace
m) The interval in which a write can possibly become persistent

write A —)
clwb A
sfence A persists before B
write B
clwb B H
stence ——)
Trace Timeline

A disjoint interval indicates that no re-ordering in the hardware
will lead to a case where A does not persist before B

PMTEST KEY IDEAS: FAST

 PMTest infers the persistence interval from PM operation trace
The interval in which a write can possibly become persistent

| ' A may NOT persist before B

write A
write B
clwb A

sfence
clwb B

sfence ——)

Trace Timeline

Interleaving

|

An overlapping interval indicates that there is a case where
A does not persist before B

PMTEST KEY IDEAS: FAST

 PMTest infers the persistence interval from PM operation trace
The interval in which a write can possibly become persistent

write A)
write B

="
clwb A ———t '
sfence
persists before B2 >wb B Oo.
¢fence ——)

Trace Timeline

Querying the trace can detect any violation
in ordering and durability guarantee at runtime

CHALLENGE:
PM Programming is Hard!

NONVOLATILE MEMORY
PERSISTENT

MEMORY

Programming
Persistent

PMTEST: Interface and Mechanism

ASPLOS’19
Memory

Applications

29

PMTEST OVERVIEW

Testing Annotation Checking Rules
— & Testing
i K ‘ Results

Persistent Memory Application PMTeslt

Offllne j
oﬁﬂ Online

PMTEST OVERVIEW

Testing Annotation

Ff =

Persistent Memory Application

9 Offline

31

PMTEST INTERFACE

x

PMTest |

& Expert Normal &
* Assertion-like low-level interface High-level interface
 Check behavior vs. specification e Minimize programmer’s effort

 Automatically inject low-level checkers

PMTest provides two different interfaces

32

PMTEST LOW-LEVEL INTERFACE

 Two low-level checkers
e isOrderedBefore(A, sizeA, B, sizeB)
m) Checks whether A is persisted before B (Ordering guarantee)
* |sPersisted(A, sizeA)
mPp Checks whether A has been written back to PM (Durability guarantee)

33

PMTEST LOW-LEVEL INTERFACE

 Two low-level checkers
e isOrderedBefore(A, sizeA, B, sizeB)
m) Checks whether A is persisted before B (Ordering guarantee)
* |sPersisted(A, sizeA)
mPp Checks whether A has been written back to PM (Durability guarantee)

* Help check if implementation meets specification for

e Programs/kernel modules based on low-level primitives
e PM libraries

34

EXAMPLE

void hashMapRemove() {

remove (buckets->bucket[hash]);

[count--; | Check if count has been persisted before rebuilding
persist _barrier();

[r-lf;t;hmap_rebui 1dQ);] ‘

N

Check if all updates have been persisted in rebuilding

PMTest helps the programmers to reason about the code

*This example is inspired by hashmap_atomic from PMDK #

PMTEST LOW-LEVEL INTERFACE

 Two low-level checkers
e isOrderedBefore(A, sizeA, B, sizeB)
m) Check whether A is persisted before B (Ordering guarantee)
* |sPersisted(A, sizeA)
mPp Check whether A has been written back to PM (Durability guarantee)

* Help check if implementation meets specification for

e Programs/kernel modules based on low-level primitives
e PM libraries

* Further enables high-level checkers to automate testing

36

PMTEST HIGH-LEVEL INTERFACE

e Currently provides high-level checkers for PMDK transactions

e Automatically detects crash consistency bugs
void ListAppend(item_t new val) {
TX_CHECKER_START; //Start of TX checker

TX_BEGIN {
node t *new_node = makeNode(new val);
TX_ADD(list.head, sizeof(node t*)); Automatically check if there
List.head = new_node; is a backup before update
List.length++;
S TX_END Automatically check if all
TX_CHECKER_END; //End of TX checker \

updates have been persisted

37
* This example does not include initialization and communication with PMTest

PMTEST HIGH-LEVEL INTERFACE

e Currently provides high-level checkers for PMDK transactions

 Automatically detects crash consistency bugs
 |f all updates have been persisted at the end of the transaction
 |f there is a backup before update during the transaction

* Automatically detects performance bugs
e Redundant log/backup
e Duplicated writeback/flush operations (for all programs)

High-level checkers minimize programmer’s effort

38

PMTEST OVERVIEW

Checking Rules

“l

| Testing

K ‘ Results
PMTest

ooa Online

PMTEST CHECKING MECHANISM

Auto inject low-level checkers

for (...) { for high-level checkers
TX_CHECKER_START; .

TX_BEGIN; write A

coe write B

TX_END; clwb B

TX_CHECKER_END; sfence Checking Result:
}PMTESt_SEND_TRACE’ r TXCEND mmp Engine - A is not persistent!

At Runtime oﬂ PM Trace
&

The checking engine tests the trace

CHECKING ENGINE ALGORITHM

* Infer the persistence interval in which a write can become persistent

e Check the interval against the low-level checkers

XX

sfence = |=—-—-——_——— sftence

write A A and B can be

clwb A = A B persisted any time

write B

sfence = ———= - - sftence

isOrderedBefore A B _

isPersist B Time B may not persist
PM Trace Persistence Interval

Our interval-based check enables faster testing

CHALLENGE:
PM Programming is Hard!

NONVOLATILE MEMORY
PERSISTENT

MEMORY
Programming

Persistent PLOS 19

Memory
Applications

Results and Conclusion

42

METHODOLOGY

Platform

CPU: 8-core Skylake 2.1GHz, OS: Ubuntu 14.04, Linux kernel 4.4
Memory: 64GB DDR4
NVM: 64GB Battery-backed NVDIMM

Workloads

Micro-benchmarks Real-world workloads

(from PMDK) PM-optimized file system

(¢ C-Tree | e Intel’s PMFS (kernel module)

e B-Tree e PM-optimized database

e RB-Tree | * Redis (PMDK Library) |

'* HashMap | * Memcached (Mnemosyne Library)
Baselines

e No testing tool
e With Intel’s Pmemcheck (only for PMDK-based programs)

43

MICRO-BENCHMARK

Speedup vs
Pmemcheck
ON RO ®

C-Tree B-Tree RB-Tree = HashMap HashMap
(Transaction) (Low-level)

PMTest is 7.1X faster than Pmemcheck

REAL-WORLD WORKLOADS

ZZX slowdown with Pmemcheck

Ian.l1

Memcached Memcached Redls PMFS PMFS Average
+Memslap +YCSB +LRU +OLTP +Filebench

N
o

=
o

PMTest Overhead
—
(&)

PMTest has < 2X overhead in real-world workloads

BUG DETECTION

 Validated with New bugs found

e 42 synthetic bugs injected to micro- e 1 crash consistency bug in PMDK applications
benchmarks e 1 performance bug in PMFS
* 3 existing bugs from commit history * 1 performance bug in PMDK applications

examples: btree: snapshot node before modifying it Browse files
examples: btree: remove not needed snapshot Browse files

Found by PMTest.
Found by PMTest.

P master (#2134) 16 . 1.5-rc
¥ master (#3134) © 16 .. 15-c1

?? marcinslusarz committed on Aug 14, 2018 1 parent 94d3flc commit 25f5e4f676e3d9cd7adcIdcTaaBf2f36e83fF6C2
EQ marcinslusarz committed on Aug 14, 2018 1 parent 25f5e4f commit b9232487a794840102e769ed9BbIETdTIT7c173Fd
Showing 1 changed file with 2 additions and 1 deletion. Unified | Split
Showing 1 changed file with 0 additions and 1 deletion. Unified | Split
3 EEm src/examples/libpmemobi/tree_map/btree_map.c View file hd
im src/examples/libpmemob]/tree_map/btree_map.c View file w 1.5 +1,5 @
e
iz @@ -365,7 +365,6 @@ btree_map_rotate_left(TOID(struct tree_map_node) lsb, - * Copyright 2215-281%, Intel Corporation
i + * Copyri @15- el Corporatis
TX_ADD_FIELD(parent, items[p - 1]); Copyright 2015-2018, Int Corporation

D_Rl{parent)->items[p - 1] = D_RO{1lsb)->items[D_RO{lsb)-»n - 1]; Redietribution and uee in source and binarr Forme. with or withoo
distributio d use source and b v rms, wi rwi t

modification, are permitted provided that the following conditions
- TX_ADD{node) ; 3z
. @8 -198,6 +198,7 @@ btree_map_create_split_node(TOID(struct tree_map_node) node,
/* rotate the node children */ B
memmove (D_RW(node)->slots + 1, D_RO(node)->slots,
sizeof(TOID{struct tree_map_node}) * (D_RO(node)->n)}; int ¢ = (BTREE_ORDER / 2);
m = D_RO(node)->items[c - 1]; / select median item */
+ T¥_ADD(node) ;

set_empty_item(&D_RW(node)->items[c - 1]);

254

46

CONCLUSION

e |t is hard to guarantee crash consistency in persistent memory applications

x

PMTest

pmtest.persistentmemory.org

* Our tool PMTest is fast and flexible

e Flexible: Supports kernel modules, custom PM programs, transaction-based programs
e Fast: Incurs < 2X overhead in real-workload applications

e PMTest has detected 3 new bugs in PMFS and PMDK applications

PMTEST
Testing Persistent Memory Applications

Samira Khan

UNIVERSITY
JVIRGINIA

M

Flash Memory Summit

	Slide Number 1
	TWO-LEVEL STORAGE MODEL
	TWO-LEVEL STORAGE MODEL
	VISION: UNIFY MEMORY AND STORAGE
	CHALLENGE: NEED ALL STORAGE SYSTEM SUPPORTS
	CHALLENGE: NEED ALL STORAGE SYSTEM SUPPORTS
	Slide Number 7
	PERSISTENT MEMORY PROGRAMMING
	PERSISTENT MEMORY PROGRAMMING
	PERSISTENT MEMORY PROGRAMMING
	PERSISTENT MEMORY PROGRAMMING (LOW-LEVEL)
	PROGRAMMING USING LOW-LEVEL PRIMITIVES
	PROGRAMMING USING LOW-LEVEL PRIMITIVES
	PERSISTENT MEMORY PROGRAMMING
	PERSISTENT MEMORY PROGRAMMING (HIGH-LEVEL)
	PROGRAMMING USING TRANSACTIONS
	PROGRAMMING USING TRANSACTIONS
	PERSISTENCE MEMORY PROGRAMMING IS HARD
	PERSISTENT MEMORY PROGRAMMING IS HARD
	Slide Number 20
	REQUIREMENTS OF THE TOOL
	PMTEST KEY IDEAS: FLEXIBLE
	PMTEST KEY IDEAS: FLEXIBLE
	PMTEST KEY IDEAS: FAST
	PMTEST KEY IDEAS: FAST
	PMTEST KEY IDEAS: FAST
	PMTEST KEY IDEAS: FAST
	PMTEST KEY IDEAS: FAST
	Slide Number 29
	PMTEST OVERVIEW
	PMTEST OVERVIEW
	PMTEST INTERFACE
	PMTEST LOW-LEVEL INTERFACE
	PMTEST LOW-LEVEL INTERFACE
	EXAMPLE
	PMTEST LOW-LEVEL INTERFACE
	PMTEST HIGH-LEVEL INTERFACE
	PMTEST HIGH-LEVEL INTERFACE
	PMTEST OVERVIEW
	PMTEST CHECKING MECHANISM
	CHECKING ENGINE ALGORITHM
	Slide Number 42
	METHODOLOGY
	MICRO-BENCHMARK
	REAL-WORLD WORKLOADS
	BUG DETECTION
	CONCLUSION
	Slide Number 48

