
Using Functional Verification in Testing

NVMe SSD Controller Designs

August 2019

Vikas Tomar
Product Engineer

Questa Verification IP

Santa Clara, CA

August 2019 1

Agenda

Santa Clara, CA

August 2019 2

▪ Functional verification
▪ Definition

▪ Methods

▪ NVMe SSD Controller
▪ Typical Communication in NVMe Controller

▪ What needs verification

▪ NVMe Controller Verification Challenges
▪ Controller configuration

▪ Extensive features

▪ Conformance and interoperability

▪ Test creation and Debug

▪ Components of verification solution
▪ Test plan

▪ Technique
▪ Effective coverage closure

▪ Effective debug

Functional Verification

Santa Clara, CA

August 2019 3

▪ Verify RTL’s confirmation to specification

▪ “Does design do what is intended”

▪ Most time and effort consuming part of Design Verification process

▪ Various steps included “None sufficient”

▪ Methods

▪ Simulation

▪ Emulation

▪ Formal

Functional Verification -Simulation

Santa Clara, CA

August 2019 4

▪ Simulation helps in verifying the design early

▪ Major components

▪ Testplan => Define verification

▪ Stimulus => Generating scenarios(+ive and -ive)

▪ Assertions => Protocol adherence

▪ Coverage => Verification closure

▪ Benefits

▪ Start early

▪ Standard methodology and verification components available

Functional Verification -Simulation

Santa Clara, CA

August 2019 5

▪ Generic UVM based Simulation Testbench

NVMe SSD controller

Santa Clara, CA

August 2019 6

▪ NVMe controller provides

▪ Queue based access to Non volatile media

▪ Data transfer is conducted using Register read writes

▪ For Data transfer NVMe promises
▪ Lower Latency

▪ High throughput

▪ High number of IOPS

▪ NVMe SSDs are benchmarked

▪ Combination of above under various test loads

▪ Functional verification for NVMe Controller SSD

▪ Specification adherence and competitive performance

NVMe SSD controller

Santa Clara, CA

August 2019 7

▪ Typical communications in NVMe SSD controller

▪ PCIe related communication

▪ Discovery of controller (PCIe PF and VF)

▪ Interrupt management

▪ Register implementation and mapping

▪ TX and RX data paths

▪ Data transfer to the Flash interfaces

▪ Data transfer to DDR interfaces (on chip memory)

▪ On-chip communications

What to verify ??

Santa Clara, CA

August 2019 8

▪ Complete NVMe SSD subsystem verification can be divided into below categories

▪ Link Level verification (PCIe)

▪ Interrupts (MSI, MSIx)

▪ PCIe power management (Various Power saving states)

▪ Resets
▪ PCIe and NVMe resets

▪ NVMe Controller Register Level verification

▪ Register values

▪ Action on register access

▪ Queue Interface

▪ Queue creation/deletion, Doorbell, Empty/Full conditions

▪ Queue location and data access

▪ Queue starving*

▪ Data transfer between Host and controller

▪ Data Access direction

▪ Extra RD/WR on PCIe interface*

* performance impacts

What to verify ??

Santa Clara, CA

August 2019 9

▪ Command Level

▪ Admin and IO command

▪ Autonomous commands like Abort, Event notifications

▪ Possible completion status

▪ Data structure access

▪ PRP (Offsets for PRP1 and PRP2)

▪ SGL (Various Descriptors)

▪ Data structure Values

▪ Identify data structures

▪ Name space data structures

▪ Log pages access

▪ Feature verification

▪ Error handling verification

NVMe Controller verification Challenges

Santa Clara, CA

August 2019 10

▪ Large Configurations space

▪ Behavior of a NVMe operation depends on the combination of various parameter

▪ SSD Namespace characteristics

▪ Controller and Identify data structures

▪ Similarly NVMe SSD can show different performance statistics depending upon

▪ Feature enabled by host

▪ Queues created by host

▪ Parameters related to data transfer selected by host

▪ The combination of all above parameters can exponentially increase

▪ Number of test cases

▪ Time and effort

▪ Such large combination is very hard to

▪ Create and cover with fast deadlines

▪ Estimate the verification closure time

NVMe Controller verification Challenges

Santa Clara, CA

August 2019 11

▪ Extensive feature support

▪ Almost 40 TPs added in NVMe 1.4 specification

▪ 27(Not including Fabrics) number of TP’s are in various development stages

▪ Challenges:

▪ Features affecting existing features

▪ Features like CMB and PMR changed the direction of data access.

▪ These operation affects the existing test scenarios and expand the verification
space

▪ Feature verification

▪ Each feature requires extensive planning

▪ Interoperability and Conformance

▪ Affected by

▪ Large configuration space

▪ New features

▪ Various platforms

NVMe Controller verification Challenges

Santa Clara, CA

August 2019 12

▪ Stimulus generation

▪ With so many parameter in picture

▪ Impossible to create directed scenarios

▪ Randomization helps but do not solve the problem

▪ Commands field interdependency

▪ Debug

▪ Hard to investigate a suspicious transaction

▪ Traffic on PCIe bus

▪ Data transfer for commands running in parallel for multiple queues

▪ Address based transactions

▪ Hard to relate a PCIe transaction to a NVMe command.

Components of Verification solution

Santa Clara, CA

August 2019 13

▪ Test plan

▪ Coverage

▪ Stimulus

▪ Random

▪ Feature wise

▪ Assertions

▪ Callbacks

▪ Monitor

▪ Debugger/Logger

Test plans

Santa Clara, CA

August 2019 14

▪ Test plan Requirement

▪ Controller configuration Test plan

▪ SSD Name space (NS DS)

▪ Command support

▪ Host configuration Test plan

▪ Covering the possible host configurations

▪ NVMe Protocol Events Test Plan

▪ Specification mapped feature wise Test plan covering

▪ Controller register space field access

▪ Queue operations

▪ PCIe Features

▪ NVMe Features

▪ Standard Compliance Testplan

Sample Test Plan

Santa Clara, CA

August 2019 15

Techniques for effective coverage closure

Santa Clara, CA

August 2019 16

▪ Testbench configuration:
▪ Should be generated using a constrained random class

▪ Benefits

✓ Constraints can be used for generating only valid configurations

✓ Controllability to generated valid number of predictable configurations

✓ Any coverage closure tool can be used to have closure on verification from configuration aspect

▪ Configurable Stimulus
▪ Initialization Sequences

▪ Num queues, MPS

▪ Queue location

▪ Interrupt

▪ All Sequences

▪ BDF/Controller ID

▪ NS ID

▪ Callback control for error handling

▪ Command

▪ Data and data structure

Techniques for Effective Debug

Santa Clara, CA

August 2019 17

▪ Monitor:

▪ Should watch address space independently

▪ Should check for any unnecessary PCIe RD/WR.

▪ Logger

▪ Should be able to correlate all pcie transactions under single NVMe transaction

▪ Should be able to highlight any unknown address access

▪ Should show the direction of the transfer

▪ Performance statistics

▪ Latency, throughput and Iops can be calculated.

▪ Configurable assertion

▪ E.g. Assertions can be added for checking latency for a queue entry with timeout

Loggers

Santa Clara, CA

August 2019 18

▪ Intuitive loggers can reduce the debug time.

Performance loggers

Santa Clara, CA

August 2019 19

▪ Performance logging

QVIP @ Mentor

Santa Clara, CA

August 2019 20

• Complete Verification Solution:

Thanks

Visit us at Booth #136

Santa Clara, CA

August 2019 21

