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In This Talk:

• AI and ML: A quick overview

• Opportunities for Flash and Storage Systems

• Workloads

• Trust, Governance and Data Management

• Edge

• How Flash and Storage can use ML/DL



What is Machine Learning and AI?

• AI: Natural Language Processing, Image 
Recognition, Anomaly Detection, etc.

• Machine Learning: Supervised, Unsupervised, 
Reinforcement, Transfer, etc.

• Deep Learning: CNNs, RNNs etc.

• Common Threads
• Training

• Inference (aka Scoring, Model Serving, Prediction)

Current State: Lots of tools, Lots of experiments, a bit 
of adoption
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A Typical ML Operational Pipeline
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Trend 1: How ML/DL Workloads Think About Data

• Data Sizes

• Incoming datasets can range from MB to TB 

• Statistical ML Models are typically small. Largest models tend to be in deep neural networks 
(DL) and range from 10s MB to GBs  

• Storage and ingest perf is most critical for largest data sets, and with GPUs

• More advanced use cases are also increasing model size – but not common

• Common Structured Data Types

• Time series and Streams, Multi-dimensional Arrays, Matrices and Vectors

• Common distributed patterns

• Data Parallel, periodic synchronization, Model Parallel



What does this mean for data?
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Access control, Lineage, Tracking of all data artifacts is critical for AI Trust



Trend 2: Need for Governance

• ML is only as good as its data

• Managing ML requires understanding data provenance 

• How was it created? Where did it come from? When was it valid?

• Who can access it? (all or subsets)? Which features were used for what?

• How was it transformed?

• What ML was it used for and when?

• Solutions require both storage management and ML management



Trend 2: Need for Governance

• Examples  
• Established: Example: Model Risk Management in Financial Services

• https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf

• Example GDPR/CCPA on Data, Reproducing and Explaining ML Decisions
• https://iapp.org/news/a/is-there-a-right-to-explanation-for-machine-learning-in-the-

gdpr/

• Example: New York City Algorithm Fairness Monitoring
• https://techcrunch.com/2017/12/12/new-york-city-moves-to-establish-algorithm-

monitoring-task-force/

https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf
https://iapp.org/news/a/is-there-a-right-to-explanation-for-machine-learning-in-the-gdpr/
https://techcrunch.com/2017/12/12/new-york-city-moves-to-establish-algorithm-monitoring-task-force/


Trend 3: The Growing Role of the Edge

• Closest to data ingest, lowest latency.

• Benefits to real time ML inference and  (maybe 
later) training

• Varied hardware architectures and resource 
constraints

• Differs from geographically distributed data 
center architecture 

• Creates need for cross cloud/edge data storage 
and management strategies IoT Reference Model



Flash and Other Storage for ML: Opportunities

• Data access Speeds (Particularly for Deep Learning Workloads)

• Data Management

• Reproducibility and Lineage

• Governance and the Challenges of Regulation, Data Access Control and 
Access Management

• The Edge
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• Caching
• Adapting caching policy using online learning can have significant benefits

• Workload classification and resource optimization
• Quantify similarity between workloads
• Track workload changes
• Learning workload mixes 

• Learning for storage tuning 
• Data distribution / tiering
• Reconfiguration of parameters, tiers, placement and layout

• Failure Prediction
*Taken from NFS Vision Workshop AI and Storage subteam report

How to Use ML/DL for Storage - Examples



How to add ML/DL to your Storage Stack
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Quick Demo 
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Takeaways

• The use of ML/DL in enterprise is at its infancy

• Storage/Flash for AI

• The first and most obvious storage challenge is performance

• The larger challenge is likely data management and governance

• Edge and distribution are also emerging challenges

• AI for Storage/Flash

• Many opportunities exist for systems optimization using ML/DL



Resources

• If you want to build your own ML use case for your storage data, go to 
http://aiclub.world/signup and get a free account. Send me email if you 
would like the sample dataset or the video (nisha@pyxeda.ai)

• Examples of Storage for ML and ML for Storage
• NFS Vision report on Storage for 2025 - See Storage and AI track 

• Proceedings/Slides of USENIX OpML 2019

• Research at HotStorage, HotEdge, FAST, USENIX ATC

• Storage Systems for ML: Databricks Delta, Apache Atlas

• RDMA data acceleration for Deep Learning (Ex. from Mellanox)

• Time series optimized databases (Ex. BTrDB, GorrillaDB)

• Memory expansion (Ex. Many studies on DRAM/Persistent Memory/Flash tiering for analytics)

• RDMA and GPU connectivity (see Mellanox)

http://aiclub.world/signup


Thank You

Nisha Talagala

nisha@pyxeda.ai



Trend 1: How ML/DL Workloads Think About Data
• The older data gets – the more its “role” changes

• Older data for batch- historical analytics and model reboots

• Used for model training (sort of), not for inference

• Guarantees can be “flexible” on older data
• Availability can be reduced (most algorithms can deal with some data loss)

• A few data corruptions don’t really hurt 

• Data is evaluated in aggregate and algorithms are tolerant of outliers

• Holes are a fact of real life data – algorithms deal with it

• Quality of service exists but is different 
• Random access is very rare 

• Heavily patterned access (most operations are some form of array/matrix)

• Streaming is starting to gain traction



Machine Learning Growth

Data: Sources 
and Storage
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Innovation

Algorithms and
Open Source



Realities of Production 
Use

https://www.oreilly.com/library/view/the-new-artificial/9781492048978/
https://emerj.com/ai-sector-overviews/valuing-the-artificial-intelligence-market-graphs-and-predictions/

Despite the advanced services available, AI usage still minimal
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