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In This Talk:

* Al and ML: A quick overview

* Opportunities for Flash and Storage Systems
* Workloads
* Trust, Governance and Data Management
* Edge

* How Flash and Storage can use ML/DL



What is Machine Learning and Al?

e Al: Natural Language Processing, Image
Recognition, Anomaly Detection, etc.

* Machine Learning: Supervised, Unsupervised,

Reinforcement, Transfer, etc.

* Deep Learning: CNNs, RNNs etc. s

Learning

* Common Threads
* Training

Deep
* Inference (aka Scoring, Model Serving, Prediction)

Current State: Lots of tools, Lots of experiments, a bit
of adoption
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Trend 1: How ML/DL Workloads Think About Data

* Data Sizes
* Incoming datasets can range from MB to TB

e Statistical ML Models are typically small. Largest models tend to be in deep neural networks
(DL) and range from 10s MB to GBs

* Storage and ingest perf is most critical for largest data sets, and with GPUs
* More advanced use cases are also increasing model size — but not common
e Common Structured Data Types
* Time series and Streams, Multi-dimensional Arrays, Matrices and Vectors
* Common distributed patterns

e Data Parallel, periodic synchronization, Model Parallel



What does this mean for data?
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Access control, Lineage, Tracking of all data artifacts is critical for Al Trust

Training

Inference



Trend 2: Need for Governance

* ML is only as good as its data

* Managing ML requires understanding data provenance
* How was it created? Where did it come from? When was it valid?
* Who can access it? (all or subsets)? Which features were used for what?
* How was it transformed?

 What ML was it used for and when?

* Solutions require both storage management and ML management



Trend 2: Need for Governance

* Examples
* Established: Example: Model Risk Management in Financial Services

» https://www.federalreserve.gov/supervisionreg/srletters/sr1107al.pdf

* Example GDPR/CCPA on Data, Reproducing and Explaining ML Decisions

» https://iapp.org/news/a/is-there-a-right-to-explanation-for-machine-learning-in-the-

gdpr/

* Example: New York City Algorithm Fairness Monitoring

» https://techcrunch.com/2017/12/12/new-york-city-moves-to-establish-algorithm-
monitoring-task-force/



https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf
https://iapp.org/news/a/is-there-a-right-to-explanation-for-machine-learning-in-the-gdpr/
https://techcrunch.com/2017/12/12/new-york-city-moves-to-establish-algorithm-monitoring-task-force/

Trend 3: The Growing Role of the Edge ©

 Closest to data ingest, lowest latency.

An individual edge

. . . software function may
e Benefits to real time ML inference and (maybe serve many applications

later) training

e VVaried hardware architectures and resource oA
constraints -

 Differs from geographically distributed data

. Edge software can be
center architecture sourced completely
sepa.ratelyfrpm@e
* Creates need for cross cloud/edge data storage Mo

loT Reference Model

and management strategies



Flash and Other Storage for ML: Opportunities

e Data access Speeds (Particularly for Deep Learning Workloads)
* Data Management
e Reproducibility and Lineage

e Governance and the Challenges of Regulation, Data Access Control and
Access Management

* The Edge



In This Talk:

* Al and ML: A quick overview

* How Flash and Storage can use ML/DL



How to Use ML/DL for Storage - Examples

e Caching

e Adapting caching policy using online learning can have significant benefits
* Workload classification and resource optimization

e Quantify similarity between workloads

* Track workload changes

e Learning workload mixes
e Learning for storage tuning

e Data distribution / tiering

e Reconfiguration of parameters, tiers, placement and layout

e Failure Prediction

*Taken from NFS Vision Workshop Al and Storage subteam report



@ Pyxeda

How to add ML/DL to your Storage Stack

Data Cleaning Model Model
Feature Eng Training Validation

Feature Model
Eng Prediction




@ Pyxeda

Quick Demo

Data Cleaning Model Model
Feature Eng Training Validation

Prediction

Service on
AWS

Feature Model
Eng Prediction



Demo



Takeaways

* The use of ML/DL in enterprise is at its infancy

* Storage/Flash for Al
* The first and most obvious storage challenge is performance
* The larger challenge is likely data management and governance
* Edge and distribution are also emerging challenges

* Al for Storage/Flash

e Many opportunities exist for systems optimization using ML/DL



Resources

* |f you want to build your own ML use case for your storage data, go to
http://aiclub.world/signup and get a free account. Send me email if you

would like the sample dataset or the video (nisha@pyxeda.ai)

* Examples of Storage for ML and ML for Storage

* NFS Vision report on Storage for 2025 - See Storage and Al track

* Proceedings/Slides of USENIX OpML 2019

* Research at HotStorage, HotEdge, FAST, USENIX ATC

* Storage Systems for ML: Databricks Delta, Apache Atlas

* RDMA data acceleration for Deep Learning (Ex. from Mellanox)

* Time series optimized databases (Ex. BTrDB, GorrillaDB)

*  Memory expansion (Ex. Many studies on DRAM/Persistent Memory/Flash tiering for analytics)

* RDMA and GPU connectivity (see Mellanox)


http://aiclub.world/signup

Thank You

Nisha Talagala
nisha@ pyxeda.ai



Trend 1: How ML/DL Workloads Think About Data

* The older data gets — the more its “role” changes
e Older data for batch- historical analytics and model reboots
* Used for model training (sort of), not for inference
* Guarantees can be “flexible” on older data
* Availability can be reduced (most algorithms can deal with some data loss)
» A few data corruptions don’t really hurt ©
* Data is evaluated in aggregate and algorithms are tolerant of outliers
* Holes are a fact of real life data — algorithms deal with it
* Quality of service exists but is different
* Random access is very rare
* Heavily patterned access (most operations are some form of array/matrix)

* Streaming is starting to gain traction



Machine Learning Growth

Data: Sources
and Storage

7N

Compute: Algorithms and

Cloud, Hardware Open Source
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Realities of Production
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There are only 1,500 companies in North America that are doing anything related to Al
today, even using its narrow, task-based definition. That means less than one percent
of all medium-to-large companies across all industries are adopting Al.

Despite the advanced services available, Al usage still minimal
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