

Improving the Locality of Generalized Integrated Interleaved Code

Xinmiao Zhang
The Ohio State University

Application of Generalized Integrated Interleaved (GII) Codes

- Redundancy is needed to tolerate and recover from failures in distributed storage
- ➤ GII codes are a type of locally recoverable erasure codes that substantially reduce the latency and overhead of failure recovery

- Enable short sub-codewords to be adopted for error correction without substantial redundancy increase
- Achieve >40GBytes/sec throughput with excellent correction capability

- ➤ Generalized integrated interleaved (GII) codes
- ➤ Modified two-layer GII codes with improved locality
- ➤ A generalization of three-layer integrated interleaved codes
- **Conclusions**

Generalized Integrated Interleaved (GII) Codes

$$\begin{bmatrix} \tilde{c}_0 \\ \tilde{c}_1 \\ \vdots \\ \tilde{c}_{v-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \alpha & \alpha^2 & \cdots & \alpha^{m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{(v-1)} & \alpha^{2(v-1)} & \cdots & \alpha^{(v-1)(m-1)} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{m-1} \end{bmatrix}$$

$$\text{Nesting matrix } G$$

Correction capability
$$t_v \geq t_{v-1} \geq \cdots \geq t_1 \geq t_0$$
 $\mathcal{C}_v \subseteq \mathcal{C}_{v-1} \subseteq \cdots \subseteq \mathcal{C}_1 \subseteq \mathcal{C}_0$

$$ilde{c}_0$$
 $ilde{c}_1$

$$\tilde{c}_{v-1}$$
 c_0, c_1, \cdots, c_n

Decoding of GII Codes

Interleave syndromes

$$\begin{bmatrix} S_j^{(l_1)} \\ S_j^{(l_2)} \\ \vdots \\ S_j^{(l_b)} \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha^{l_1} & \alpha^{l_2} & \cdots & \alpha^{l_b} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha^{(b-1)l_1} & \alpha^{(b-1)l_2} & \cdots & \alpha^{(b-1)l_b} \end{bmatrix}^{-1} \begin{bmatrix} \tilde{S}_j^{(0)} \\ \tilde{S}_j^{(1)} \\ \vdots \\ \tilde{S}_j^{(b-1)} \end{bmatrix}$$

$$\begin{bmatrix} l_1, l_2, \cdots, l_b \text{: indices of interleaves} \\ \text{with more than } t_0 \text{ erasures} \\ \vdots \\ \tilde{S}_j^{(b-1)} \end{bmatrix}$$
 Syndrome conversion matrix

nested syndromes

- t syndromes are needed to correct t erasures
- Higher-order syndromes for the interleaves are generated from the nested syndromes
- Syndrome conversion matrix is always invertible
- Each nested syndrome is generated by utilizing all interleaves

Modified GII Codes

- Less powerful nestings involve fewer interleaves
- \triangleright Form the syndrome conversion matrix using the bottom rows of G' as much as possible
 - The selected nestings should have sufficient correction capability
 - The selected nestings should cover the exceptional interleaves
 - Consecutive nestings are used to simplify the selection
- The syndrome conversion matrix is invertible if the number of interleaves does not exceed the values in the table

v	$GF(2^4)$	$GF(2^5)$	$GF(2^{6})$	$GF(2^7)$	$GF(2^8)$	$GF(2^9)$
2	16	32	64	128	256	512
3	5	6	12	22	28	62
4	5	6	8	12	15	20

Correction Capability and Locality Comparisons

- ➤ Modified GII codes preserve the same correction capability as the original GII codes for most practical settings
- ➤ Modified GII codes require fewer interleaves to utilize the shared parities when there are fewer extra erasures to correct
- > Have very small implementation overhead compared to the GII codes
- Achieve good tradeoff on locality and correction capability

Three-layer Integrated Interleaved Codes

- Layer 2 parities are shared by individual subgroups of interleaves
- Layer 3 parities are shared by all interleaves
- ➤ When there are fewer interleaves with fewer extra errors/erasures to correct, layer 2 parities and the other interleaves in the same sub-group are utilized

Nestings in Three-Layer Codes

Flash Memory Summit

 G_1 : layer-2 nesting matrix G_2 : layer-3 nesting matrix

$$\Gamma = \begin{bmatrix} G_1 & 0 & \cdots & 0 \\ \hline 0 & G_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \hline 0 & 0 & \cdots & G_1 \\ \hline G_2 \end{bmatrix}$$

	111	0		0	
	0	$11 \cdots 1$		0	
=	:	:		:	
	0	0		11 · · · 1	
	11 · · · 1	11 · · · 1	$11 \cdots 1$	11 · · · 1	

Joint nesting matrix

Previous 3-layer nesting

- Previous 3-layer integrated interleaved code
 - One-level of nesting in each layer
 - Only one exceptional interleave from each subgroup can be corrected
 - Layer-3 parities only add to the correction of a single exceptional interleave in a subgroup

Generalized Three-layer Integrated Interleaved Codes

Flash Memory Summit

$$\Gamma = \begin{bmatrix} G_1 & 0 & \cdots & 0 \\ \hline 0 & G_1 & \cdots & 0 \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline 0 & 0 & \cdots & G_1 \\ \hline & G_2 \end{bmatrix} = \begin{bmatrix} G_1 & 0 & \cdots & 0 \\ 0 & G_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & G_1 \\ \hline G_2^{r-1} & G_2^{r-1} & \cdots & G_2^{r-1} \\ \hline & \vdots & \ddots & \vdots \\ G_2^0 & \alpha^{-(r-1)}G_2^0 & \cdots & \alpha^{-(m_1-1)}G_2^{r-2} \\ \hline & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1} & \cdots & G_2^{n-1} \\ \hline & \vdots & \vdots & \ddots & \vdots \\ G_2^{n-1} & G_2^{n-1}$$

$$G_{1} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \alpha & \alpha^{2} & \cdots & \alpha^{m_{2}-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{(v_{1}-1)} & \alpha^{2(v_{1}-1)} & \cdots & \alpha^{(v_{1}-1)(m_{2}-1)} \end{bmatrix}$$

$$G_{1} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \alpha & \alpha^{2} & \cdots & \alpha^{m_{2}-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{(v_{1}-1)} & \alpha^{2(v_{1}-1)} & \cdots & \alpha^{(v_{1}-1)(m_{2}-1)} \end{bmatrix} \qquad G_{2}^{i} = \begin{bmatrix} 1 & \alpha^{v_{1}} & \alpha^{2v_{1}} & \cdots & \alpha^{v_{1}(m_{2}-1)} \\ 1 & \alpha^{v_{1}+1} & \alpha^{2(v_{1}+1)} & \cdots & \alpha^{(v_{1}+1)(m_{2}-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha^{v_{1}+s_{i}-1} \alpha^{2(v_{1}+s_{i}-1)} & \cdots & \alpha^{(v_{1}+s_{i}-1)(m_{2}-1)} \end{bmatrix}$$

The syndrome conversion matrix formed by the columns corresponding to the interleaves with extra erasures and consecutive rows of $[G_1^T | (G_2^i)^T]^T$ in the joint nesting matrix is always invertible, if the numbers of groups and exceptional interleaves in the groups are not exceeded

Correctable Erasure Pattern Comparisons

Flash Memory Summit

Example 1: same redundancy single-level nesting in 3-layer GII code

Layer-2:
$$t_1 = t_0 + 1$$
; layer-3: $t'_1 = t_0 + 2$

$$\Gamma_{II} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \Gamma_{GII} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & \alpha & 1 & \alpha \end{bmatrix}$$

Pattern	GII	II	Pattern	GII	II
$\{1,0 \mid 0,0\}$	1	4	$\{1,0 \mid 1,0\}$	1	√
$\{1, 1 \mid 0, 0\}$	4	×	$\{1, 1 \mid 1, 0\}$	4	×
$\{2,0 \mid 0,0\}$	1	4	$\{2,0 \mid 1,0\}$	✓	4
$\{2, 1 \mid 0, 0\}$	√	×	$\{2,1 \mid 1,0\}$	4	×

- Multiple code levels are allowed in layer 2 and 3
- Layer-3 codes can correct additional interleaves
- Layer-3 codes do not have to be stronger than layer-2 codes

Example 2: same redundancy multi-level nesting in 3-layer GII code

II codes: $t_1 = t_0 + 2$; $t'_1 = t_0 + 3$

GII codes: $t_1 = t_2 = t_0 + 1$; layer-3: $t'_1 = t_0 + 1$; $t'_2 = t_0 + 2$

Extra erasure patterns	$ [\{2,0,0 \mid 2,0,0 \mid 0,0,0\} \{2,0,0 \mid 2,0,0 \mid 1,0,0\}] $
correctable by the	$\{2,0,0 \mid 2,0,0 \mid 2,0,0\}$
3-layer II code	$\{3,0,0 \mid 0,0,0 \mid 0,0,0\} \{3,0,0 \mid 1,0,0 \mid 0,0,0\}$
but not the	$\{3,0,0 \mid 1,0,0 \mid 1,0,0\} \{3,0,0 \mid 2,0,0 \mid 0,0,0\}$
3-layer GII code	$\{3,0,0 \mid 2,0,0 \mid 1,0,0\} \{3,0,0 \mid 2,0,0 \mid 2,0,0\}$
Extra erasure patterns	$\{1,1,0 \mid 0,0,0 \mid 0,0,0\}\{1,1,0 \mid 1,0,0 \mid 0,0,0\}$
correctable by the	$\{1,1,0 \mid 1,0,0 \mid 1,0,0\}\{1,1,0 \mid 1,1,0 \mid 0,0,0\}$
3-layer GII code	$\{1,1,0 \mid 1,1,0 \mid 1,0,0\}\{1,1,0 \mid 1,1,0 \mid 1,1,0\}$
but not the	$\{1,1,1 \mid 0,0,0 \mid 0,0,0\} \{1,1,0 \mid 1,0,0 \mid 0,0,0\}$
3-layer II code	$ \{1, 1, 1 \mid 1, 0, 0 \mid 1, 0, 0\} \{1, 1, 0 \mid 1, 1, 0 \mid 0, 0, 0\} $
	$\{1,1,1 \mid 1,1,0 \mid 1,0,0\}\{1,1,0 \mid 1,1,0 \mid 1,1,0\}$
	$\{2,1,0 \mid 0,0,0 \mid 0,0,0\} \{2,1,0 \mid 1,0,0 \mid 0,0,0\}$
	$ \left \{2,1,0 \mid 1,0,0 \mid 1,0,0\} \{2,1,0 \mid 1,1,0 \mid 0,0,0\} \right $
	$\{2,1,0 \mid 1,1,0 \mid 1,0,0\}\{2,1,0 \mid 1,1,0 \mid 1,1,0\}$
	$\{2,1,1 \mid 0,0,0 \mid 0,0,0\} \{2,1,1 \mid 1,0,0 \mid 0,0,0\}$
	$ \{2,1,1 \mid 1,0,0 \mid 1,0,0\}\{2,1,1 \mid 1,1,0 \mid 0,0,0\} $
	$\{2,1,1 \mid 1,1,0 \mid 1,0,0\}\{2,1,1 \mid 1,1,0 \mid 1,1,0\}$
	$\{2,1,1 \mid 1,1,1 \mid 0,0,0\}\{2,1,1 \mid 1,1,1 \mid 1,0,0\}$
	$\{2,1,1 \mid 1,1,1 \mid 1,1,0\}$

Implementation Architectures for GII Decoders

- \triangleright Two-layer GII codes based on Reed-Solomon codes over $GF(2^8)$
 - 8 sub-codewords
 - Length of each sub-codeword: 2040 bit
 - Redundancy: 12.5%

- Hardware complexity
 - <30% area increase compared to hard-decision Reed-Solomon decoder
 - Clock frequency: >550Mhz on FPGA
 - >40GByte/s throughput

^{*} X. Zhang and Z. Xie, "Efficient Architectures for Generalized Integrated Interleaved Decoder," IEEE Trans. on Circuits and Systems-I, 2019.

Conclusions Flash Memory Summit

- GII codes can achieve hyper throughput with excellent correction capability and low complexity
- Modified two-layer GII codes improve the locality of erasure correction without degradation on the correction capability for most practical settings
- Three-layer GII codes further improve the locality of erasure and error correction and the third-layer parities can be used in a flexible way
- ➤ Three-layer GII codes achieve better locality than two-layer GII codes at the cost of higher redundancy