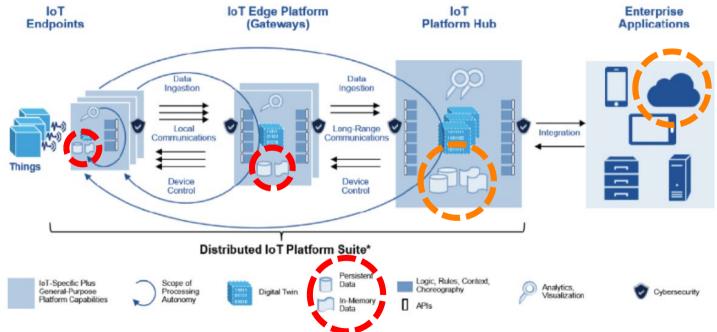


High-Performance Flash Storage to Enable IoT and Accelerate Al


EMBD-302B-1: Flash Memory, IoT and AI — Bringing It All Together

Andy Watson

CTO, WekalO watson@weka.io, @the_andywatson

IoT — Where Does the Data Go?

Gartner Reference Model for IoT Business Solutions: Edge, Datacenter(s) & Cloud

Flash for IoT at the Edge

- IoT data generated at the Edge
 - Arriving rapidly, too valuable to lose
 - Capture it all
 - Process locally to scrub & compress
 - Run simple analytics to flag major anomalies immediately
 - Use-cases have different requirements
 - Some will forward all scrubbed data
 - Others only send upstream exceptional or summary data
- Flash advantages: fast, small, low power, lightweight
 - Tolerates vibration & hi/low temp better than HDD

Energy Utility	0.5 TB / day
Offshore Oil Field	0.75 TB / week
Oil & Gas Refinery	1 TB / day
Airliner in flight	20 TB / hour

Flash for IoT in the Datacenter/Cloud

- IoT data sent upstream from the Edge
 - Even if distilled per source, in aggregate a continual flood
 - All must be captured and safely stored
 - Made available to multiple analytics purposes
 - At this point, category label is not so much "IoT" as "Data Lake"
 - Likely includes multi-site replication and tiering to an archival layer
- Flash advantages: low-latency and high-throughput
 - For both sequential or random access patterns
 - Any GPU-accelerated processing absolutely requires flash
 - Each individual GPU can ingest data at 100-gbit/s data rates

Flash Enabling IoT at the Edge

- IoT at the Edge Medical Devices
 - Often in the form of patches worn by patients
 - Possibly locally configured/managed by smartphone software
 - Monitors vital signs, location & movement, blood levels
 - Notify emergency services (patient falls or in other serious events)
 - Homeostatic interaction (electronic pulses, insulin, etc.)
 - More ambitious future devices could take bolder action
 - Intervention when epileptic onset is detected
 - Enable improved motor skills for patients with spinal injuries, etc.
 - Data uploaded (usually at intervals) for clinical supervision

Flash Enabling IoT Upstream

- IoT in the Datacenter Autonomous Vehicles
 - Vehicles outfitted with cameras & sensors collect data
 - Roaming streets and highways, about 10 TB/hour per car
 - o This is not the same as data vicariously collected from owners' cars
 - This is data used as input to neural-net AI/ML training/validation to develop and refine the algorithms for self-driving capabilities
 - Multiple petabytes of new data per week added to the data lake
 - Many forms of analytics are applied to this IoT data
 - And also applied to owners' cars' IoT data being uploaded
 - GPU's are used to accelerate the AI/ML compute farm
 - NVMe flash storage can barely keep up with the GPU's IO demands

Leveraging NVMe Flash for GPU's

at an actual AI/ML customer site (autonomous vehicle software development)

Transform Train Validate

~80x Speedup 4.7 6 5.4. Hours!

Eliminating the GPU IO bottleneck with NVMe flash + WekalO

WEKA IO
World's Fastest File System