When it comes to Emerging MemoriesOne Size Doesn't Fit All!!

August 8, 2019

Overwhelming Deluge of Data

Nmem

1 Zettabyte (ZB) = 1 Trillion Gigabytes (GB)

...Driving the Need for more efficient Memory and more distributed processing

Slide 2

Edge Processing: Increased Edge Compute/Memory

- Due to the increased data collection, it is no longer practical and power efficient to move all the data to the Cloud
- Higher Processing at the Edge
- Higher Non-Volatile Memory to store
 - Program, Models/Coefficients, increased amount of Data collected
- Higher Volatile Memory for AI/Signal Processing
- Ultra-low Power to extend Battery Life and to reduce thermal issues to reduce cost and form factor

→ More than ever, it is critical to have efficient memory in edge nodes

Nmem

Resistive RAMs Provide a Simpler/Smaller Memory

* Not to scale

Resistive RAMs such as MRAM, RRAM, PCRAM, enable Simplified & Smaller Unified Memory

Nmem

Optimization: Significant Improvements in Speed/Power/Area

- Architecture
 - Memory Architecture: Read/Write Circuits, Decoders, Array
 - SOC Architecture and Distribution of Memory throughout the SOC
 - Memory Subsystem: BIST, Failure Correction (ECC, Repair, Calibration)
- Optimized Circuit Design affecting even more RRAM/PCRAM/MRAM (newer technologies)
- Design Customization including:
 - Size
 - Shape/Aspect Ratio (Column Muxing)
 - Array Subdivision/ Bit line length
 - Pipelining
 - Reflow/Non-Reflow Bitcells

Area: Exact Sizing and Shape Optimization

Nmem

Not to Scale

Area: Exact Sizing and Shape Optimization

- Standard IP Cores are usually One-size-fits-all: e.g.16Mb & 32Mb
- Example: you need a 4Mb & only 512K Reflow Capable (~20% larger)
- Tally up delta size 4x1.2-0.5x(1-1.2)..... 4.7x larger
- Shape/Routing Congestions also result in larger SOC: ~30% larger
 - It is not always about the memory best area but about best SOC area
- Memory Design Architecture also affects size enormously: >2x delta
- → Tally up: overall size delta could be in excess of ~13.4x in this example (4.7/0.7*2)

Speed/Power Optimization

- The Memory design can significantly affect Speed/Power
 - Array Subdivision (Bitline length)
 - Pipelining
 - Optimized Circuit Design (Sense Amp, Decoder, Data Pipe, etc..)
- Shorter Bitline Integration time can improve performance by >2x
 - 5-30% larger area depending on optimization
- Design architecture is of paramount importance for best possible performance especially in newer technologies like RRAM/MRAM
 - Read Access times vary can widely from 2.5ns to 20+ns typ so by 8x
- Pipelining achieves significantly higher bit rate (if acceptable), **2x** per stage

→All and all optimization can reasonably **improve performance by >16x**

Nmem

Optimization/Customization Improvements Summary

>13x Smaller Area

>16x better Speed/Power

• 50X Faster Time to Market through Design Automation SW

• More Reliable Product through Validation/Characterization SW

Numem: Best-in-Class Memory Subsystem IP Cores

Patented Architecture and Design (Smaller size, higher Perf./Lower Power)

• Optimized Standard & Custom Memory Subsystem IP Cores

- Validated on MRAM through tape-out of 19 devices to date and extensive testing
- Our memory are non-volatile and 2-3x smaller than SRAM
- Design Automation SW for Memory Customization & Validation/Characterization
 - Yields much greater PPA improvements and higher reliability
- Memory Chiplets (die) for use in MCP SOCs

Nmem

Test & Qual

Test Chips

Thank You

