

NVMe-oF Through PCIe Gen4

H3 Platform
Brian Pan

Flash Memory Summit

Drive 200G NVMe-oF by Using PCIe Gen4 Solution

Architecture of NVMe-oF through PCIe Gen4

IBM P9 with 100G NIC

IBM LC922 Mellanox CX5

JBOf+ Broadcom Stingray 100G Smart NIC

- Broadcom Atlas PCle Gen4 switch
- Broadcom Stingray

NVMe SSD

- Phison PCle Gen4 NVMe SSD
- Intel PCIe Gen3 NVMe SSD

Testing System-PCle Gen4 JBOf

Santa Clara, CA

JBOf Specification

- PCle switch
 - Broadcom 88096 Atlas PCIe switch with internal Synthetic mode
- Host connection
 - 1x PCle Gen4 x16 to LC922
 - 1x Broadcom Stingray 100G Smart NIC
- NVMe SSD
 - 5x Phison 5016-E16 NVMe SSD
- Flash Memory Summit X19 Intel 900P

NVMe-oF Target Setup

- LC922 with Mellanox Connect X5
 - End to end PCIe Gen4
 - NVMe SSD→ PCIe switch→ IBM P9 CPU→ Mellanox CX5→ 100G switch
- Broadcom Stingray+ PCIe Gen4 switch
 - PCIe Gen3 smart NIC+ PCIe Gen4 switch
 - NVMe SSD→ PCIe switch→ Stingray→ 100G switch

NVMe-oF- 19,209 MB/s

Bandwidth - NVMe over Fabric

Transfer Size	Size Initiator_1		Initiator_2	
(Sequential)	MB/s	IOPS	MB/s	IOPS
128K read	9,260	71.2k	9,949	75.4k
128K write	8,537	64.7k	7,577	57.2k

NOTES:

- 1. Performance measured using FIO rev 3.1, with 8 workers with Queue Depth of 64 and using Linux in-box NVMe driver.
- 2. Initiator 1 is accessing to Target 1 with 3x NVMe
- 3. Initiator 2 is accessing to Target 2 with 2x NVMe
- 4. Initiator 1 and Initiator 2 are simultaneously assessing with NVMeoF targets

Direct-attached (Gen4 x16)- 23,772MB/s

Bandwidth - Direct Attached

Transfer Size	Server_1 (NVMe x2)		Server_2 (NVMe x3)	
(Sequential)	MB/s	IOPS	MB/s	IOPS
128K read	9,664	75.5k	14,108	113k

NOTES:

- 1. Performance measured using FIO rev 3.1, with 8 workers with Queue Depth of 64 and using Linux in-box NVMe driver.
- 2. Server 1 is assigned with 2x NVMe
- 3. Server_2 is assigned with 3x NVMe
- 4. Server_1 and Server_2 are simultaneously assessing with 5x NVMe

Latency of NVMe-oF

Latency - NVMe over Fabric

Transfer Size	Initiator_1	Initiator_2	
(Sequential)	Avg. (usec)	Avg. (usec)	
4K read	41.3	38.6	
4k write 39.7		35.9	

NOTES:

1. Performance measured using FIO rev 3.1, with 1 worker with total Queue Depth of 1 and using Linux in-box NVMe driver.

Latency of Direct-attached

Latency - Direct Attached (concurrent)

Transfer Size	Server_1	Server_2	
(Sequential) Avg. (usec)		Avg. (usec)	
4K read	18.2	17.7	
4k write	23.8	18.9	

NOTES:

1. Performance measured using FIO rev 3.1, with 1 worker with total Queue Depth of 1 and using Linux in-box NVMe driver.

Benefits of PCIe Gen4 Solution

- Performance
 - Almost double performance compared PCIe Gen3
- Cost saving
 - By using PCIe Gen4 solution, NVMe-oF can support more initiators
 - Only one PCIe Gen4 x16 support 200Gbps ethernet connection

Brian Pan | H3

GM

- **S** huaiyangpan
- @ www.h3platform.com
- +886 2 2698 3800#110