
Why Cache in DRAM if you have NVMe-oF?

Radu Stoica, Nikolas Ioannou, Kornilios Kourtis IBM Research Zurich

Santa Clara, CA August 2019

The architecture of a web application

Benefits:

- ✓ Scalability & elasticity
- ✓ Tolerance to failures
- Develop, deploy & manage layers independently
- DRAM caching drawbacks: X Cost X Underutilization X Limited size X Cold start

Trends in high-performance storage

- 1. Advances in non-volatile storage:
 - NAND Flash highest improvement in density, IOPS, and cost
 - New non-volatile technologies (3DXP, Z-NAND, XL-FLASH)
- 2. Advances in software and protocols:
 - NVMe & NVMe-oF enables fast access to NVM storage
 - OS bypass for data path (SPDK)

Idea: replace the DRAM cache with NVMe-oF storage

End users Load balancers Frontend (HTTP servers) Application servers (backends) KV API (put/get) NDRAMEaghe (Mempaenecacherepatible) Data persistency layer (object store, HA database)

Disaggregation benefits:

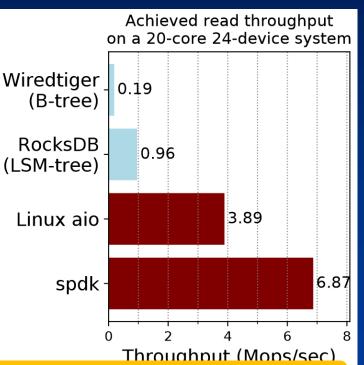
- ✓ Scale compute independently from storage
- ✓ Better elasticity
- ✓ Lower resource waste

Cost benefits:

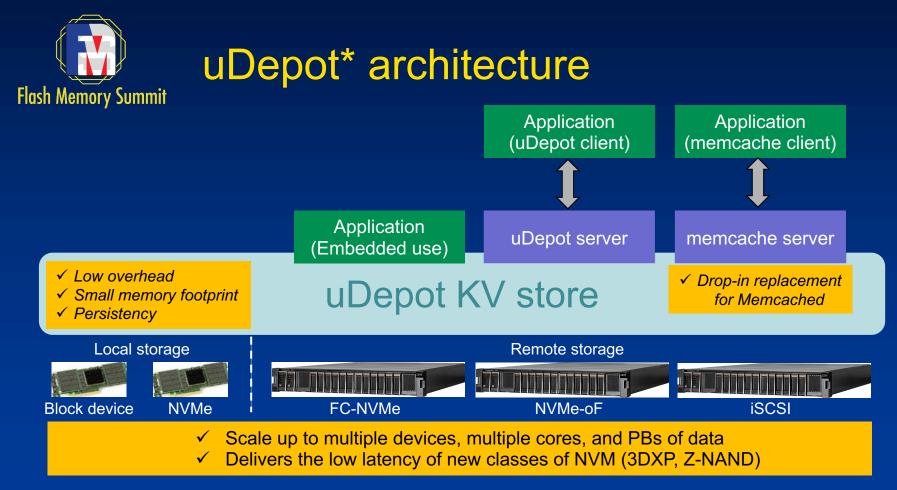
- ✓ Replace DRAM with NVMe storage
- ✓ Service other workloads on the same HW
- ✓ Data reduction @ no performance loss

Management benefits:

- ✓ One way to provision storage
- ✓ Redundancy reduces failure rate
- ✓ Unlimited capacity

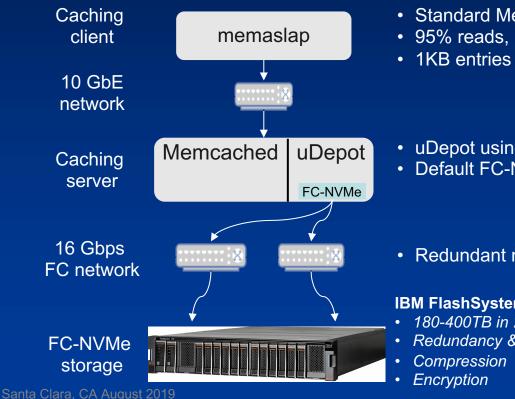


Existing caching systems


DRAM-based systems (Memcached, Redis) are not designed to support persistent storage

Storage-based caching solutions are too slow:

- Built for slower devices (e.g., use synchronous IO)
- Data structures with inherent IO amplification (LSM- or B-trees)
- Cache data in DRAM, limiting scalability
- Rich feature set (e.g., transactions, snapshots)

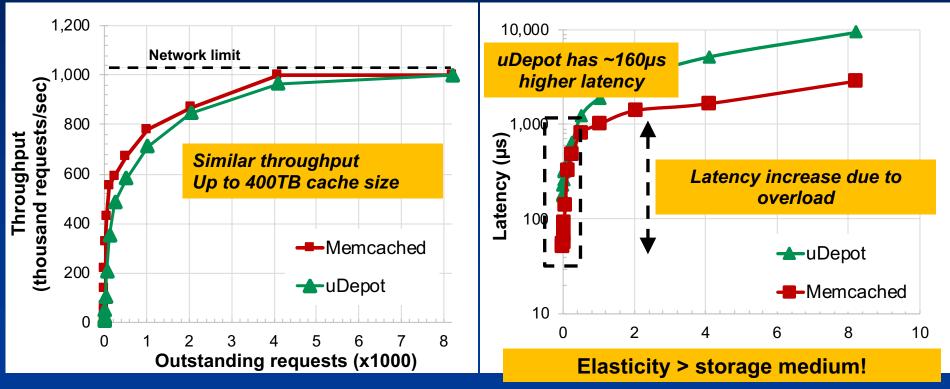

Faster HW not enough, software needs to change

*Reaping the performance of fast NVM storage with uDepot, Kornilios Kourtis et al., FAST 2019

Proof-of-concept deployment

- Standard Memcached benchmark
- 95% reads, 5% writes

 uDepot using Linux AIO Default FC-NVMe driver


Redundant network paths

IBM FlashSystem® 000

Redundancy & availability Compression Encryption		Read	Write
	Latency (µs)	155	95
	IOPS (millions)	1.1	0.6
	Bandwidth (GB/s)	10	4.5

Throughput & latency comparison

- Fast NVMe storage offers opportunities to replace DRAM, but existing data store technologies fail to match their performance
- We demonstrate the DRAM-performance of a system composed of:
 - uDepot: a Memcached drop-in replacement that delivers storage performance
 - IBM FlashSystem[®] 900 (155us latency, 10GB/s throughput, NVMe-ready)
- Benefits:
 - ✓ Disaggregation
 - ✓ Cost reduction
 - ✓ Simplified management

Thank You !

Questions?

Flash Memory Summit 2019 Santa Clara, CA www.research.ibm.com/labs/zurich/cci/