

Are Ethernet Attached SSDs Happening?

NVMF-302B-1

Organizer/Chair: Rob Davis, Mellanox

Presenters:

Ilker Cebeli, Samsung

John Kloeppner, NetApp

Balaji Venkateshwaran, Toshiba

Khurram Milak, Netronome

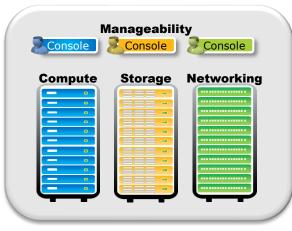
Woo Suk Chung, SK Hynix

Session Agenda

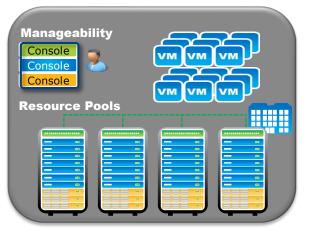
- Ilker, Samsung 15 minutes
- John NetApp, Balaji Toshiba, Khurram Marvell 40 minutes
- Woo, SK-Hynix 15 minutes
- Q&A 10 minutes

Are Ethernet Attached SSDs Happening?

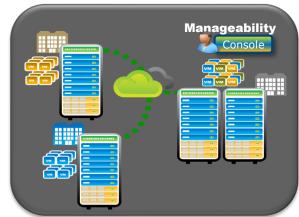
Disaggregated NVMe-oF Storage Ilker Cebeli Sr. Director of Planning Samsung


This presentation and/or accompanying oral statements by Samsung representatives collectively, the "Presentation") is intended to provide information concerning the SSD and memory industry and Samsung Electronics Co., Ltd. and certain affiliates (collectively, "Samsung"). While Samsung strives to provide information that is accurate and up-to-date, this Presentation may nonetheless contain inaccuracies or omissions. As a consequence, Samsung does not in any way guarantee the accuracy or completeness of the information provided in this Presentation.

This Presentation may include forward-looking statements, including, but not limited to, statements about any matter that is not a historical fact; statements regarding Samsung's intentions, beliefs or current expectations concerning, among other things, market prospects, technological developments, growth, strategies, and the industry in which Samsung operates; and statements regarding products or features that are still in development. By their nature, forward-looking statements involve risks and uncertainties, because they relate to events and depend on circumstances that may or may not occur in the future. Samsung cautions you that forward looking statements are not guarantees of future performance and that the actual developments of Samsung, the market, or industry in which Samsung operates may differ materially from those made or suggested by the forward-looking statements in this Presentation. In addition, even if such forward-looking statements are shown to be accurate, those developments may not be indicative of developments in future periods.


Data Center Evolution

Traditional Data Center

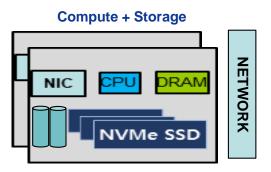


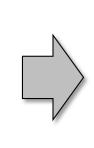
Stand Alone Component Suited for Enterprise Applications 1GbE Networking

Hyper-converged Virtualized

Software-Defined Composable

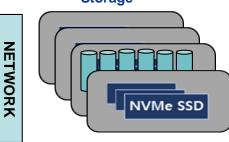
Converged Management Virtualized Computing/ Networking 10GbE Networking Rack Scale Software Defined Disaggregated Compute and Storage Composable 25-100GbE Networking





Why Disaggregation?

Converged


Disaggregated Compute & Storage

Compute

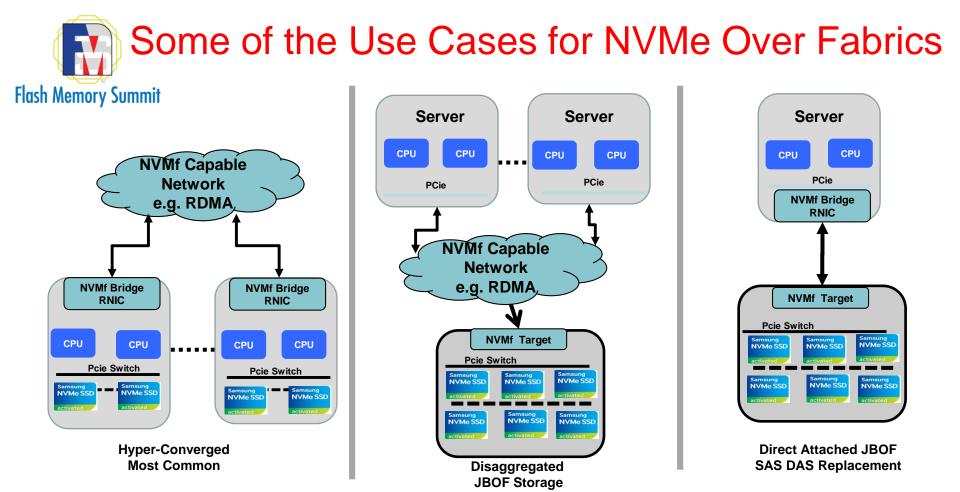
Storage

□ Pros:

- Scale Compute and Storage linearly
- Managed resources and storage services

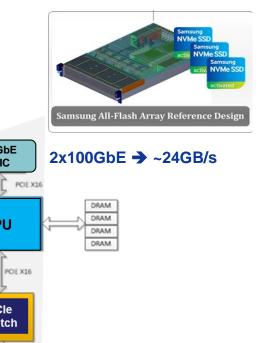
□ Cons

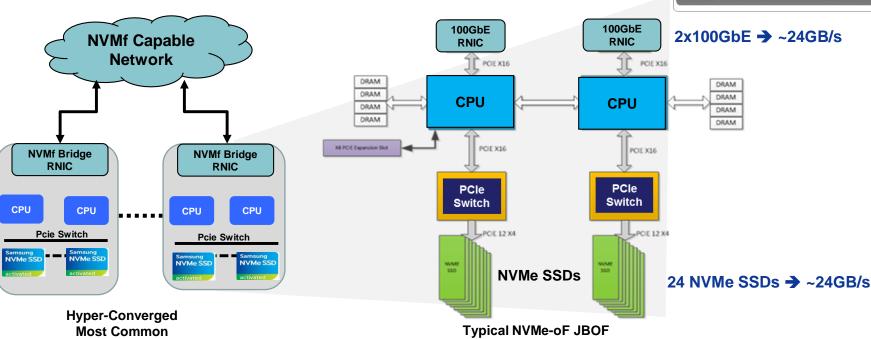
- Resources under-utilization
- Storage and Compute on the same network


Pros:

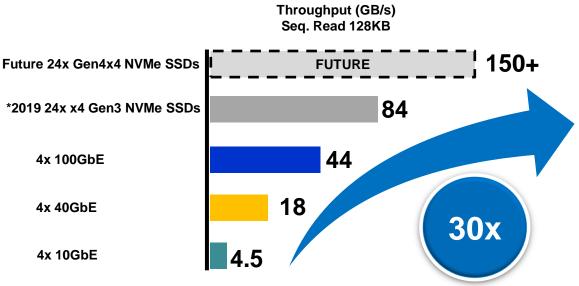
NIC

- Compute and Storage scale independently
- Shared resources
- Improved utilization \checkmark
- Grow as you go model based on workload demand \checkmark
- Centralized storage services


Cons


- Requires efficient storage protocols and latency
- Low latency and high bandwidth networking 6

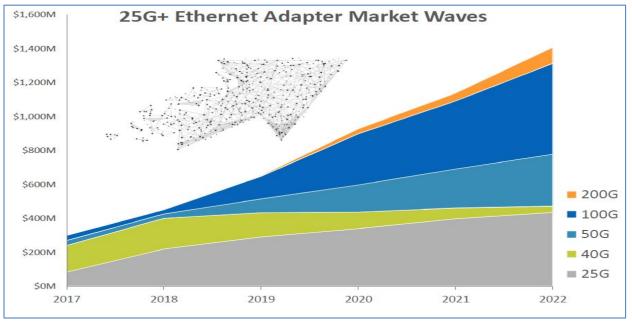
NVMe-oF JBOF


Flash Memory Summit 2019 Santa Clara, CA

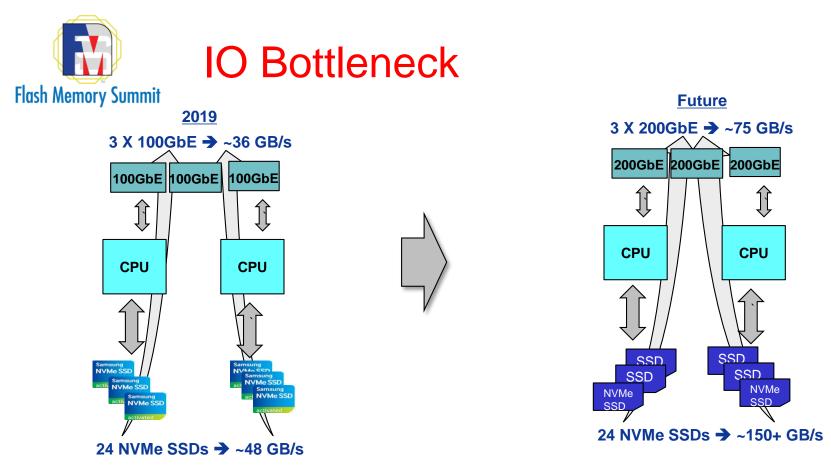
2015 Platform Balanced Bandwidth between IO and NVMe

2015 NVMe-oF JBOF

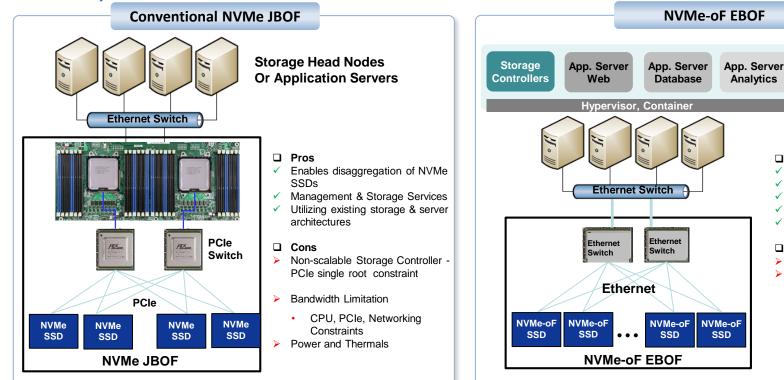
Future NVMe Bandwidth



* 24x Samsung PM1725b NVMe SSDs (3.5GB/s throughput each)


Network links could throttle the storage throughput performance

Evolution of Networking Speeds and 25Gb/s and Above


Source: Crehan Long-range Forecast - Ethernet Adapter forecast, January 2019 via Mellanox Q2'2019

CPU and IO bottleneck for storage throughput performance

NVMe-oF SSD based EBOF

NVMe-oF EBOF can address bandwidth, scalability, and flexibility

□ Pros

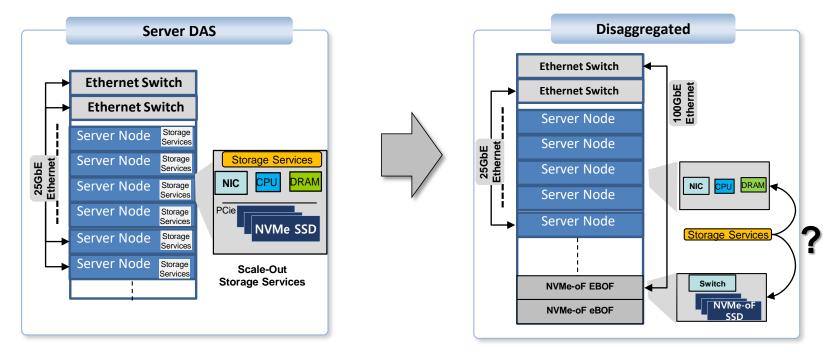
Cons

High Bandwidth

Less power

Lower latency

Scaled Linearly (Ethernet)


New platform architecture

Management of Storage Services & Network Devices

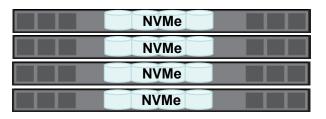
Sharable via NVMe-oF

Example Datacenter Storage Disaggregation

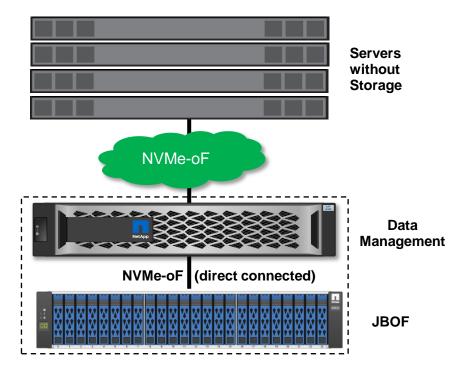
Where Storage Services and Network Devices managed

ilker.cebeli@samsung.com

Thank You

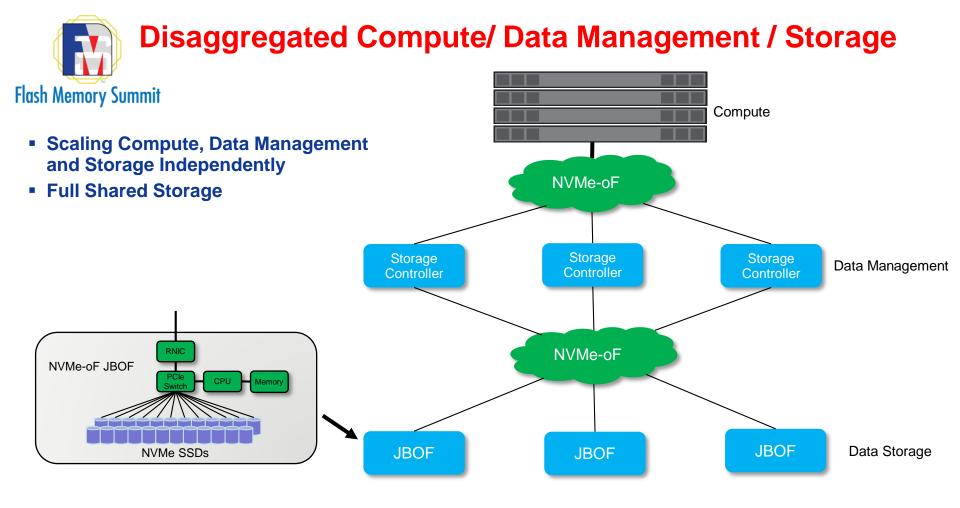

Session Agenda

- Ilker, Samsung 15 minutes
- John NetApp, Balaji Toshiba, Khurram Marvell 40/3 minutes
- Woo, SK-Hynix 15 minutes
- Q&A 10 minutes



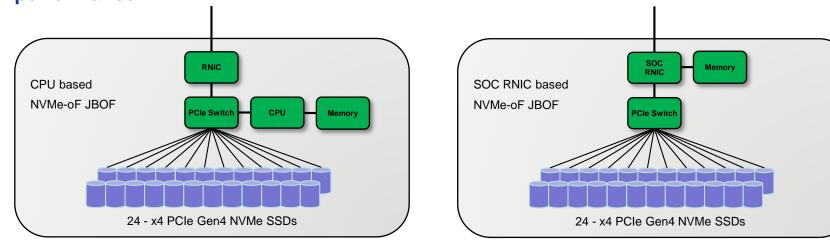
NVMe -> NVMe over Fabrics

Servers with embedded NVMe Storage



- Local high performance / low latency access
- Isolated Storage
- Under-utilized SSD Performance and Capacity

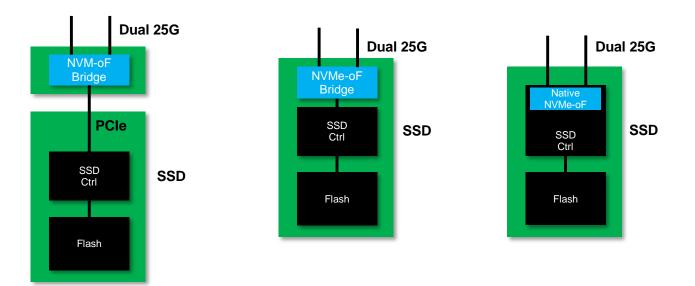
- Shared Storage, better utilization of storage
- Similar NVMe Performance


17 © 2019 NetApp, Inc. All rights reserved.

NetApp

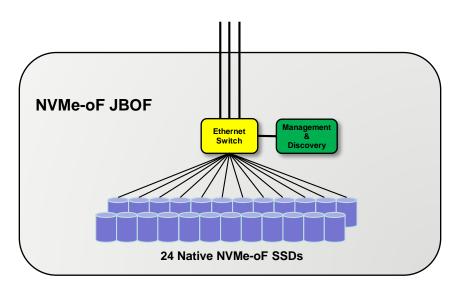
NVMe-oF JBOF Limitations

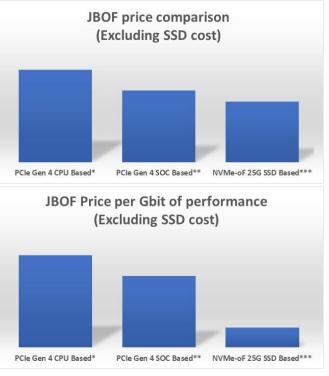
- Performance
 - Throughput PCle Gen3 -> PCle Gen4 -> PCle Gen5, SCM, limit by existing infrastructure
 - Latency Store and Forward architecture
- Cost CPU, SOC/RNICs, Switches, Mem don't scale well to match increasing SSD performance



Native Ethernet / NVMe-oF SSDs

Optimize NVMe-oF performance at SSD Options for NVMe-oF SSDs





Solution with Native NVMe-oF SSDs

Lower Latency, Higher ThroughputLower Cost and overall TCO

* Supports one 2x200G RNIC connected with x16 PCIe Gen4

** Supports one 2x200G SOC RNIC connected with x16 PCIe Gen4

*** Supports three 200G Host connected Ethernet ports

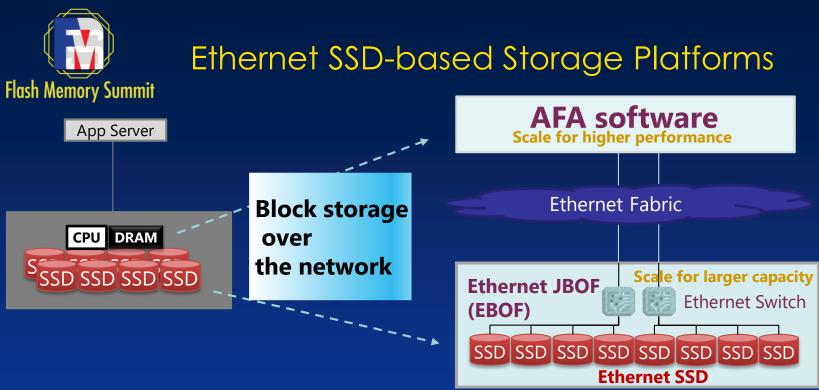
Additional Benefits

- Additional Benefits
 - Performance/cost scales with SSDs
 - Lower Power, reduced TCO
 - Including Ethernet switching within JBOF ... potential to reduce networking cost, footprint, cabling

Other Activities

- Industry Standardization / Enablement
 - Standardization Work underway in SNIA to define Form Factor, Pinout, Management – Toshiba will cover
 - Enablement Fabrico Interposer Marvell will cover

Thanks!


Session Agenda

- Ilker, Samsung 15 minutes
- John NetApp, Balaji Toshiba, Khurram Marvell 40/3 minutes
- Woo, SK-Hynix 15 minutes
- Q&A 10 minutes

Enabling Native NVMe-oF[™] SSDs (Ethernet SSDs)

August 2019

Advantages

- Independent scaling between performance (controller node) and capacity (JBOF) for optimal HW deployment in large scale systems
- Manage NVMe[™] -based pools for separate storage/caching tiers

Enabling NVMe-oF[™] Functionality in SSDs

- Connector
 - SFF 8639 connector predominant for NVMe[™]-based systems
 - SFF-TA-1002 (EDSFF) specification a future-proof option
 - Standardizing Ethernet pinout in the connector a must for industry adoption
- Management Framework
 - NVMe[™] devices attached to a system get enumerated using OS resources
 - Ethernet-attached device enumeration needs equivalent network functionality
 - Potential candidates for easier manageability:
 - NVMe-MI from a BMC (not network)
 - RedFish works for scalability in a Datacenter Network
 - RSD uses RedFish

Considerations in Connector Standardization

- Ethernet-based pinout should ensure:
 - SSDs of different types can be interchanged without electrical damage
 - First look in the VPD via SMBus, then apply power and signals
 - Forward-compatible
 - Connector of choice should support $25G \rightarrow 50G \rightarrow 100G$ transitions
 - Multi-lane for dual-port connectivity
 - Backwards-compatible
 - Ethernet pinout-based SSD should share midplane with SAS/SATA/PCIe pinouts
- Discovery of SSD:
 - Use standardized discovery mechanisms to obtain IP address, slot location
 - Discover and manage through RedFish
- Partnering to solve these challenges
 - Comprehensive standard specification in development in SNIA

Management Frameworks for Ethernet SSDs

- Some administration will be done in-band via NVMe[™] Admin commands once attached to a host
- But allocation and attachment needs to happen first at scale
 - Drive parameters and health monitoring
 - Encryption / Decryption key management
 - Host usage Authentication and Authorization
 - Logical assignment of drive resources on demand to multiple hosts
- NVMe[™] functionality being mapped to RedFish management schema for these purposes

Other Advanced NVMe[™] Features

- Data Path Functionality
 - Zoned Name Space Support
 - Key Value namespaces
 - Endurance Group / NVM Set / Namespace Management
 - Future Computational Storage platform for FPGA, Accelerators, etc.
- Part of a Composable Infrastructure
 - Storage "stack" assembled on demand tailored to application needs
 - Drawn from pools of Ethernet Drives, then returned to the pool when finished

World's First True Ethernet NVMe-oF[™] SSD



In-Form Factor Native NVMe-oF[™] SSD (Ethernet SSD)

- Standard 2.5" In-Form Factor
- No external components needed
- SFF 8639 / 9639 standardized connector with Ethernet pinout
- Dual-port 25Gbit Ethernet
- RDMA over Converged Ethernet ver. 2 (RoCEv2)
- 675K IOPS @ 4KB Random Read
 - Equivalent performance to PCIe[®] Gen3x4

Visit the Toshiba Memory FMS Booth #307

2.5" Ethernet SSD Prototype

Demonstration of 2.5" Ethernet SSD prototype with native NVMe-oF[™] support

Example of Ethernet SSD-based AFA architecture

Prototype of a possible AFA platform using EBOF (Ethernet SSD-based)

Thanks!

Session Agenda

- Ilker, Samsung 15 minutes
- John NetApp, Balaji -Toshiba, <u>Khurram Marvell</u> 40/3 minutes
- Woo, SK-Hynix 15 minutes
- Q&A 10 minutes

Native NVMe-oF SSD

Khurram Malik

Sr. Product Marketing Manager, Marvell

Current Challenges with NVMe-oF

- SSD Industry is Diverging:
 - Different interfaces (SATA, SAS, PCIe)
 - Different protocols/transports (NVMe-oF variants; NVMe; SCSi ...)
 - Different form factor (U.2, U.3, EDSFF S, ESDFF L, EDSFF 3")
- Challenges:
 - Standards are diverging instead of converging.
 - No clear direction which standard will eventually win.
 - Selecting a right standard and enable NVMe-oF SSD.
 - Managing two different SSDs skews; NVMe and NVME-oF
 - Managing two different midplanes; PCIe (NVMe) & Ethernet (NVMe-oF)
 - Designing a new chassis to use NVMe-oF SSDs.

OCP Kinetic and SNIA Ethernet Drive Pins

		SATA	SATA Express	SAS	MultiLink SAS	Quad PCIe	USB	OCP Kinetic	SNIA Ethernet Drive
S1	Ground	GND	GND	GROUND	GROUND	Ground	GND	Ground	Ground
S2	Rcvr+	A+	PETp0	PR+	RX0+		SSRX+	RX0+	RX0+
S3	Rcvr-	A-	PETn0	PR-	RX0-		SSRX-	RX0-	RX0-
S4	Ground	GND	GND	GROUND	GROUND	Ground	GND	Ground	Ground
S5	Xmtr-	B-	PERn0	TP-	TX0-		SSTX-	TX0-	TX0-
S6	Xmtr+	B+	PETR0	TP+	TX0+		SSTX+	TX0+	TX0+
S7	Ground	GND	GND	GROUND	GROUND	Ground	GND	Ground	Ground
S8	Ground		GND	GROUND	GROUND	Ground		Ground	Ground
S 9	Rcvr+		PETp1	SR+	RX1+			RX1+	RX1+ optional
S10	Rcvr-		PETn1	SR-	RX1-			RX1-	RX1- optional
S11	Ground		GND	GROUND	GROUND	Ground		Ground	Ground
S12	Xmtr-		PERn1	ST+	TX1-			TX1-	TX1- optional
S13	Xmtr+		PERp1	ST-	TX1+			TX1+	TX1+ optional
S14	Ground		GND	GROUND	GROUND	Ground		Ground	Ground

U2 OCP Kinetic and SNIA Ethernet Drive pin assignments induce crosstalk between adjacent TX and RX pairs, which reduce the max supported channel length. Therefore we recommend different differential pin assignments for 25Gbps PAM2 or 50Gbps PAM4 two Lanes Ethernet application.

U.2 connector pin assignment for Ethernet application

		. 🖵
Name	Pin	
GND	S1	
S0T+ (A+)	S2	
S0T- (A-)	S3	
GND	S4	
SOR- (B-)	S5	
S0R+ (B+)	S6	
GND	S7	
RefClk1+	E1	
RefClk1-	E2	
3.3Vaux	E3	
ePERst1#	E4	
ePERst0#	E5	
RSVD	E6	
RSVD(Wake#) /SASAct2	P1	
sPCIeRst/SAS	P2	
RSVD(DevSLP#	P3	
lfDet#	P4	
	P5	
Ground	P6	
	P7	
	P8	
5 V	P9	
PRSNT#	P10	
Activity	P11	
Ground	P12	
	P13	
	P14	
12 V	P15	

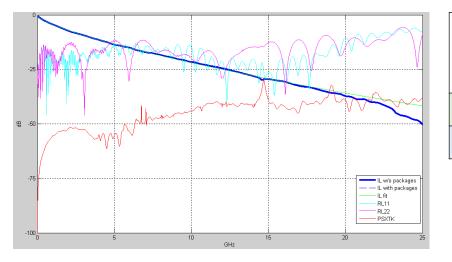
					SAS & Ethernet	PCIe & Ethernet	Notes:
V		7			Signals	Signals	10000
J.	ы		Pin	Name	proposal1	proposal2	Manuallha
1	14	P.	E7	RefClk0+			Marvell has
¢	P •	Ŀ.	E8 E9	RefClk0-			
4	1.1	P.		GND			assignment
1	11	P.	E10 E11	PETp0 PETn0	TX1+ TX1-		assignment
d,	b 9	P.	E11 E12	GND	171-		
J	1.5	P	E12 E13	PERn0		RX0-	minimize co
٩	113	E.	E13	PERp0		RX0+	
d,	10	Ε.	E15	GND			
J	1.5	Ε.	E16	RSVD			Operating I
5		ι.	 	GND			0
		С.	S9	S1T+			
		Π.	S10	S1T-			
			S11	GND			
		Π.	S12	S1R-	RX1-		 Proposal
		6	S13	S1R+	RX1+		11000301
			S14	GND			1:00
ď			S15	RSVD			different
1			S16	GND			
٩	P 4	le.	S17	PETp1/S2T+		TX0+	column)
d	b i	le.	S18	PETn1/S2T-		TX0-	columnj
]	E I	le.	S19	GND			
٩	11	Ŀ.	S20	PERn1/S2R-	RX0-		 Proposal
d	64	P.	S21	PERp1/S2R+	RX0+		posai
]	1.1	P.	S22	GND			e e ve e e e til
٩		P	S23	PETp2/S3T+		TX1+	compatik
d	6.	Ε.	S24	PETn2/S3T-		TX1-	
1	1.1	С.	S25	GND			column)
٩	12	С.	S26	PERn2/S3R-			columny
d	b i	Π.	S27	PERp2/S3R+			
J	1.1	LC .	S28	GND			
٩	113	6	E17	PETp3	TX0+		
d		6	E18	PETn3	TX0-		
J			E19	GND		B 1/4	
٩	14	le i	E20	PERn3		RX1- RX1+	PCIe Signals
d	b e	le.	E21 E22	PERp3 GND		KYT+	Fue signals
1	1.4	Le .	E22	SMCIk			
٩	1	Þ	E23	SMDat			PCIe/SAS Signals
d,	b 4	Ŀ.	E25	DualPortEn			
	E		220	Duan orten			SAS Signals
t							
	R						SAS/SATA Signals
-	$\langle \rangle$						JAJ JATA Jighais

Notes:

Marvell has recommended two high speed signal pin assignment proposals for Ethernet application to minimize connector impacts on the overall Channel **Operating Margin(COM).**

- Proposal1: Maximize the distance from one differential pair to other signals; (Highlighted as red column)
- Proposal2: Based on proposal1 concept, keep pin compatible with PCIe signals. (Highlighted as blue column)

Fig1. U.2 pin assignment



MRVL COM simulation Setup and Results

Flash Memory Summit

Based on below long lossy channel, run end to end COM/ERL simulation with two proposed U.2 pin configurations.

- IEEE 802.3by 25GBASE-KR Channel Operating Margin(COM>3dB) without FEC.
- IEEE 802.3bs 50GBASE-KR Channel Operating Margin(COM>3dB,ERL>10dB) •

Operation mode	U.2 Pin pro (SAS & Ethern Propos	et Signals)	U.2 Pin proposal2 (PCIe & Ethernet Signals) Poposal2		
	COM(dB)	ERL(dB)	COM(dB)	ERL(dB)	
25Gbps PAM2	3.52	NA	3.65	NA	
50Gbps PAM4	3.25	14.08	3.20	14.18	

Convert NVMe SSD to NVMe-oF SSD

NVMe-oF Converter Controller interposer in a carrier

NVMe-oF Converter Controller Interposer (SSD side)

NVMe-oF Converter Controller Interposer (network side) (*8639 is used to drive 2x25Gb Ethernet)

NVMe-oF Converter Controller Interposer (profile) Connected to U.2 (non-carrier) 40

Enabling NVMe-oF

Simple, low RBOM, low power backplane

Enabling NVMe-oF

Flash Memory Summit

- Marinating NVMe and NVMe-oF support
 - NVMe
 - NVMe-oF : ROCEv2 ; TCP
- NVMe-oF Converter Controller
 - Can fit interposer
 - Can fit inside U.2/EDSFF
 - Can be merged with SSD Controller
- Re use of backplane
 - Re use 8639/9639
 - No changes to mid plane
 - Swap IOM
- No extra enclosure expense (other than IOM)
- Single SSD can work both PCIe and Ethernet (Better inventory management) 42

Thanks!

Session Agenda

- Ilker, Samsung 15 minutes
- John NetApp, Balaji Toshiba, Khurram Marvell 40 minutes
- Woo, SK-Hynix 15 minutes
- Q&A 10 minutes

• Woo slides

Thanks!

Session Agenda

- Ilker, Samsung 15 minutes
- John NetApp, Balaji Toshiba, Khurram Marvell 40 minutes
- Woo, SK-Hynix 15 minutes
- <u>Q&A 10 minutes</u>

Q/A

Thanks!